Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,4 +1,9 @@
# Personal AI Assistant: Your Web and PDF Guide
## How to run on local desktop
* Install correct packages
* Run in CMD
* Navigate to location of the notebook: ex. cd C:\Users\felixstuyck\Documents
* streamlit run "Ai assistent script.py"

![ezgif com-gif-maker (1)](https://github.com/Abhi0323/Generative-AI-based-Personal-Assistant/assets/112967999/8718ba7f-e075-4a42-bbef-9a6e94ff50a3)

Expand Down
46 changes: 46 additions & 0 deletions Test FAISS package.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,46 @@
import getpass
import os
import configparser
from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores import FAISS
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter

# Get open AI key
config_path = r"C:\Users\felixstuyck\OneDrive - Finvision\Documenten\Python\AI assistant config.ini"
config = configparser.ConfigParser()
config.read(config_path)
OPEN_AI_KEY = config['API_KEY_Assistent']['API_KEY']
os.environ["OPENAI_API_KEY"] = getpass.getpass(OPEN_AI_KEY)

# Load and process the document
loader = TextLoader(R"C:\Users\felixstuyck\OneDrive - Finvision\Documenten\Stow stored procedure.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)

# Generate embeddings and create FAISS index
embeddings = OpenAIEmbeddings()
db = FAISS.from_documents(docs, embeddings)
print(f"Number of documents in the index: {db.index.ntotal}")

# Query the vectorstore
query = "What did the president say about Ketanji Brown Jackson"
docs = db.similarity_search(query)
print(f"Top result content: {docs[0].page_content}")

# Use as retriever
retriever = db.as_retriever()
docs = retriever.invoke(query)
print(f"Top result content (retriever): {docs[0].page_content}")

# Similarity search with score
docs_and_scores = db.similarity_search_with_score(query)
for doc, score in docs_and_scores:
print(f"Content: {doc.page_content}, Score: {score}")

# Save and load FAISS index
db.save_local("faiss_index")
new_db = FAISS.load_local("faiss_index", embeddings)
docs = new_db.similarity_search(query)
print(f"Top result content (loaded index): {docs[0].page_content}")
152 changes: 46 additions & 106 deletions main.py
Original file line number Diff line number Diff line change
@@ -1,107 +1,47 @@
import getpass
import os
import streamlit as st
import pickle
import PyPDF2
from PyPDF2 import PdfReader
from langchain.document_loaders import PyPDFLoader
from langchain.chains.summarize import load_summarize_chain
import tempfile
import time
import langchain
from langchain import OpenAI
from langchain.chains import RetrievalQAWithSourcesChain
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.document_loaders import UnstructuredURLLoader
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains.question_answering import load_qa_chain


OPENAI_API_KEY ='User Your Open AI API KEY'
url_file_path = "url_faiss_store_openai.pkl"

# Streamlit setup
st.set_page_config(
page_title="Personal AI Assistant",
layout="wide",
initial_sidebar_state="expanded"
)
st.markdown("<h1 style='text-align: center; color: black;'>🤖 Personal AI Assistant</h1>", unsafe_allow_html=True)
st.sidebar.markdown("<h3 style='text-align: center; color: black;'>Assistant Console</h3>", unsafe_allow_html=True)

# ---- URL Loading & Embedding ----
num_links = st.sidebar.slider("How many links do you want to input?", min_value=1, max_value=5, value=1)
urls = [st.sidebar.text_input(f"URL {i+1}", key=f"url{i}") for i in range(num_links)]
if urls:
loader = UnstructuredURLLoader(urls=urls)
data = loader.load()
text_splitter = RecursiveCharacterTextSplitter(separators=["\n\n", "\n", "."], chunk_size=1000)
url_docs = text_splitter.split_documents(data)
if url_docs:
embeddings = OpenAIEmbeddings(openai_api_key=OPENAI_API_KEY)
url_vectorindex_openai = FAISS.from_documents(url_docs, embeddings)
with open(url_file_path, "wb") as f:
pickle.dump(url_vectorindex_openai, f)

# ---- PDF Loading & Embedding ----
uploaded_file = st.sidebar.file_uploader("Upload a PDF file", type=['pdf'])
if uploaded_file:
pdf_reader = PdfReader(uploaded_file)
pdf_text = ""
for page in pdf_reader.pages:
pdf_text += page.extract_text()
text_splitter = RecursiveCharacterTextSplitter(separators=["\n\n", "\n", "."], chunk_size= 500)
pdf_docs = text_splitter.split_text(pdf_text)
if pdf_docs:
embeddings = OpenAIEmbeddings(openai_api_key=OPENAI_API_KEY)
pdf_vectors = FAISS.from_texts(pdf_docs, embeddings)


# ---- Query Interface ----
llm = OpenAI(temperature=0.9, max_tokens=500, openai_api_key=OPENAI_API_KEY)
data_source = st.selectbox("What do you want to inquire about?", ["URL", "PDF"])

if data_source == "URL":
query_url = st.text_input('Ask your question about URLs:')
if query_url:
if os.path.exists(url_file_path): # Ensure URL database exists
with open(url_file_path, "rb") as f:
vectorstore = pickle.load(f)
chain = RetrievalQAWithSourcesChain.from_llm(llm=llm, retriever=vectorstore.as_retriever())
result = chain({"question": query_url}, return_only_outputs=True)
st.header("Answer based on URLs:")
st.subheader(result['answer'])

elif data_source == "PDF":
query_pdf = st.text_input('Ask your question about PDFs:')
if query_pdf:
docs = pdf_vectors.similarity_search(query_pdf)

chain = load_qa_chain(llm, chain_type="stuff")
response = chain.run(input_documents=docs, question=query_pdf)

st.write(response)

if st.button("Summarize PDF"):
def summarize_pdfs_from_folder(pdfs_folder):
summaries = []
for pdf_file in pdfs_folder:
with tempfile.NamedTemporaryFile(delete=False) as temp_file:
temp_path = temp_file.name
temp_file.write(pdf_file.getvalue())
loader = PyPDFLoader(temp_path)
docs = loader.load_and_split()
chain = load_summarize_chain(llm, chain_type="map_reduce")
summary = chain.run(docs)
summaries.append(summary)
os.remove(temp_path)
return summaries

summaries = summarize_pdfs_from_folder([uploaded_file])
for summary in summaries:
st.write(summary)





import configparser

# Get open AI key
config_path = r"C:\Users\felixstuyck\OneDrive - Finvision\Documenten\Python\AI assistant config.ini"
config = configparser.ConfigParser()
config.read(config_path)
OPEN_AI_KEY = config['API_KEY_Assistent']['API_KEY']
os.environ["OPENAI_API_KEY"] = getpass.getpass(OPEN_AI_KEY)

from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores import FAISS
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter

# Load and process the document
loader = TextLoader(R"C:\Users\felixstuyck\OneDrive - Finvision\Documenten\Stow stored procedure.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)

# Generate embeddings and create FAISS index
embeddings = OpenAIEmbeddings()
db = FAISS.from_documents(docs, embeddings)
print(f"Number of documents in the index: {db.index.ntotal}")

# Query the vectorstore
query = "What did the president say about Ketanji Brown Jackson"
docs = db.similarity_search(query)
print(f"Top result content: {docs[0].page_content}")

# Use as retriever
retriever = db.as_retriever()
docs = retriever.invoke(query)
print(f"Top result content (retriever): {docs[0].page_content}")

# Similarity search with score
docs_and_scores = db.similarity_search_with_score(query)
for doc, score in docs_and_scores:
print(f"Content: {doc.page_content}, Score: {score}")

# Save and load FAISS index
db.save_local("faiss_index")
new_db = FAISS.load_local("faiss_index", embeddings)
docs = new_db.similarity_search(query)
print(f"Top result content (loaded index): {docs[0].page_content}")