|
| 1 | +"""Demo script for testing ContextExportableObj serialization with images.""" |
| 2 | + |
| 3 | +import contraqctor.qc as qc |
| 4 | + |
| 5 | + |
| 6 | +class ImageTestSuite(qc.Suite): |
| 7 | + """Test suite demonstrating image handling in reports.""" |
| 8 | + |
| 9 | + name = "Image Visualization Tests" |
| 10 | + |
| 11 | + def test_matplotlib_figure(self): |
| 12 | + """Test that creates a matplotlib figure.""" |
| 13 | + try: |
| 14 | + import matplotlib.pyplot as plt |
| 15 | + import numpy as np |
| 16 | + |
| 17 | + # Create a simple plot |
| 18 | + fig, ax = plt.subplots(figsize=(8, 6)) |
| 19 | + x = np.linspace(0, 10, 100) |
| 20 | + y = np.sin(x) |
| 21 | + ax.plot(x, y, label="sin(x)") |
| 22 | + ax.set_xlabel("X") |
| 23 | + ax.set_ylabel("Y") |
| 24 | + ax.set_title("Sine Wave") |
| 25 | + ax.legend() |
| 26 | + ax.grid(True) |
| 27 | + |
| 28 | + # Add the figure to context using ContextExportableObj |
| 29 | + context = qc.ContextExportableObj.as_context(fig) |
| 30 | + context["data_points"] = len(x) |
| 31 | + |
| 32 | + plt.close(fig) |
| 33 | + |
| 34 | + return self.pass_test(True, "Matplotlib figure created successfully", context=context) |
| 35 | + except ImportError: |
| 36 | + return self.skip_test("Matplotlib not available") |
| 37 | + |
| 38 | + def test_pil_image(self): |
| 39 | + """Test that creates a PIL image.""" |
| 40 | + try: |
| 41 | + from PIL import Image, ImageDraw |
| 42 | + |
| 43 | + # Create a simple image |
| 44 | + img = Image.new("RGB", (400, 300), color="white") |
| 45 | + draw = ImageDraw.Draw(img) |
| 46 | + |
| 47 | + # Draw some shapes |
| 48 | + draw.rectangle([50, 50, 350, 250], outline="blue", width=3) |
| 49 | + draw.ellipse([100, 100, 300, 200], fill="lightblue", outline="darkblue", width=2) |
| 50 | + draw.text((150, 130), "Test Image", fill="black") |
| 51 | + |
| 52 | + # Add the image to context |
| 53 | + context = qc.ContextExportableObj.as_context(img) |
| 54 | + context["image_size"] = img.size |
| 55 | + |
| 56 | + return self.pass_test(True, "PIL Image created successfully", context=context) |
| 57 | + except ImportError: |
| 58 | + return self.skip_test("PIL not available") |
| 59 | + |
| 60 | + def test_numpy_array_image(self): |
| 61 | + """Test that creates a numpy array image.""" |
| 62 | + try: |
| 63 | + import numpy as np |
| 64 | + |
| 65 | + # Create a gradient image |
| 66 | + img = np.zeros((200, 300, 3), dtype=np.uint8) |
| 67 | + for i in range(200): |
| 68 | + for j in range(300): |
| 69 | + img[i, j] = [int(i / 200 * 255), int(j / 300 * 255), 128] |
| 70 | + |
| 71 | + # Add the image to context |
| 72 | + context = qc.ContextExportableObj.as_context(img) |
| 73 | + context["array_shape"] = str(img.shape) |
| 74 | + context["array_dtype"] = str(img.dtype) |
| 75 | + |
| 76 | + return self.pass_test(True, "Numpy array image created successfully", context=context) |
| 77 | + except ImportError: |
| 78 | + return self.skip_test("Numpy not available") |
| 79 | + |
| 80 | + def test_multiple_images(self): |
| 81 | + """Test with multiple images in context.""" |
| 82 | + try: |
| 83 | + import matplotlib.pyplot as plt |
| 84 | + import numpy as np |
| 85 | + |
| 86 | + # Create two different plots |
| 87 | + fig1, ax1 = plt.subplots(figsize=(6, 4)) |
| 88 | + x = np.linspace(0, 2 * np.pi, 100) |
| 89 | + ax1.plot(x, np.sin(x), "r-", label="sin") |
| 90 | + ax1.set_title("Sine") |
| 91 | + ax1.legend() |
| 92 | + |
| 93 | + fig2, ax2 = plt.subplots(figsize=(6, 4)) |
| 94 | + ax2.plot(x, np.cos(x), "b-", label="cos") |
| 95 | + ax2.set_title("Cosine") |
| 96 | + ax2.legend() |
| 97 | + |
| 98 | + # Create context with multiple images (not using ContextExportableObj.as_context |
| 99 | + # because it only handles one asset) |
| 100 | + context = { |
| 101 | + "sine_plot": qc.ContextExportableObj(fig1), |
| 102 | + "cosine_plot": qc.ContextExportableObj(fig2), |
| 103 | + "note": "Two separate plots", |
| 104 | + } |
| 105 | + |
| 106 | + plt.close(fig1) |
| 107 | + plt.close(fig2) |
| 108 | + |
| 109 | + return self.pass_test(True, "Multiple images created successfully", context=context) |
| 110 | + except ImportError: |
| 111 | + return self.skip_test("Matplotlib not available") |
| 112 | + |
| 113 | + def test_failed_with_image(self): |
| 114 | + """Test that fails but includes an image for debugging.""" |
| 115 | + try: |
| 116 | + import matplotlib.pyplot as plt |
| 117 | + import numpy as np |
| 118 | + |
| 119 | + # Create a plot showing the failure |
| 120 | + fig, ax = plt.subplots(figsize=(8, 6)) |
| 121 | + x = np.array([1, 2, 3, 4, 5]) |
| 122 | + expected = np.array([2, 4, 6, 8, 10]) |
| 123 | + actual = np.array([2, 4, 7, 8, 10]) # Deviation at x=3 |
| 124 | + |
| 125 | + ax.plot(x, expected, "g-o", label="Expected") |
| 126 | + ax.plot(x, actual, "r-x", label="Actual") |
| 127 | + ax.set_xlabel("X") |
| 128 | + ax.set_ylabel("Y") |
| 129 | + ax.set_title("Data Validation Failure") |
| 130 | + ax.legend() |
| 131 | + ax.grid(True) |
| 132 | + |
| 133 | + context = qc.ContextExportableObj.as_context(fig) |
| 134 | + context["deviation_index"] = 2 |
| 135 | + context["expected_value"] = 6 |
| 136 | + context["actual_value"] = 7 |
| 137 | + |
| 138 | + plt.close(fig) |
| 139 | + |
| 140 | + return self.fail_test(False, "Data validation failed at index 2", context=context) |
| 141 | + except ImportError: |
| 142 | + return self.skip_test("Matplotlib not available") |
| 143 | + |
| 144 | + |
| 145 | +class DataQualitySuite(qc.Suite): |
| 146 | + """Test suite for data quality checks.""" |
| 147 | + |
| 148 | + name = "Data Quality" |
| 149 | + |
| 150 | + def test_data_range(self): |
| 151 | + """Test data is within expected range.""" |
| 152 | + return self.pass_test(True, "Data within range") |
| 153 | + |
| 154 | + def test_no_missing_values(self): |
| 155 | + """Test no missing values.""" |
| 156 | + return self.pass_test(True, "No missing values found") |
| 157 | + |
| 158 | + def test_data_type_validation(self): |
| 159 | + """Test data types are correct.""" |
| 160 | + return self.warn_test(True, "Some data types could be optimized") |
| 161 | + |
| 162 | + |
| 163 | +def main(): |
| 164 | + """Run the demo and generate both console and HTML reports.""" |
| 165 | + print("Running Image Visualization Demo\n") |
| 166 | + |
| 167 | + # Create runner and add test suites |
| 168 | + runner = qc.Runner() |
| 169 | + runner.add_suite(ImageTestSuite(), "Visualization") |
| 170 | + runner.add_suite(DataQualitySuite(), "Data Quality") |
| 171 | + |
| 172 | + # Manually run tests and collect results |
| 173 | + from contraqctor.qc.base import ResultsStatistics, _TaggedResult |
| 174 | + |
| 175 | + tagged_results = [] |
| 176 | + for group, suites in runner.suites.items(): |
| 177 | + for suite in suites: |
| 178 | + for test_method in suite.get_tests(): |
| 179 | + results_iter = suite.run_test(test_method) |
| 180 | + result = next(iter(results_iter)) |
| 181 | + tagged_results.append(_TaggedResult(suite=suite, group=group, result=result, test=test_method)) |
| 182 | + |
| 183 | + stats = ResultsStatistics.from_results([tr.result for tr in tagged_results]) |
| 184 | + |
| 185 | + # Display with console reporter (with asset serialization) |
| 186 | + print("=" * 80) |
| 187 | + print("CONSOLE OUTPUT (with asset serialization enabled)") |
| 188 | + print("=" * 80 + "\n") |
| 189 | + |
| 190 | + console_reporter = qc.ConsoleReporter() |
| 191 | + console_reporter.report_results( |
| 192 | + tagged_results, |
| 193 | + stats, |
| 194 | + serialize_context_exportable_obj=True, |
| 195 | + asset_output_dir="./report/assets", |
| 196 | + ) |
| 197 | + |
| 198 | + # Generate HTML report WITHOUT serialization (baseline) |
| 199 | + print("\n" + "=" * 80) |
| 200 | + print("Generating HTML report WITHOUT serialization...") |
| 201 | + html_reporter_no_serialize = qc.HtmlReporter("test_report_no_serialize.html") |
| 202 | + html_reporter_no_serialize.report_results( |
| 203 | + tagged_results, |
| 204 | + stats, |
| 205 | + serialize_context_exportable_obj=False, |
| 206 | + ) |
| 207 | + print("HTML report (without serialization) saved to: test_report_no_serialize.html") |
| 208 | + |
| 209 | + # Generate HTML report WITH serialization |
| 210 | + print("\n" + "=" * 80) |
| 211 | + print("Generating HTML report WITH serialization...") |
| 212 | + html_reporter_with_serialize = qc.HtmlReporter("test_report_with_serialize.html") |
| 213 | + html_reporter_with_serialize.report_results( |
| 214 | + tagged_results, |
| 215 | + stats, |
| 216 | + serialize_context_exportable_obj=True, |
| 217 | + ) |
| 218 | + print("HTML report (with serialization) saved to: test_report_with_serialize.html") |
| 219 | + |
| 220 | + print("\n" + "=" * 80) |
| 221 | + print("SUMMARY") |
| 222 | + print("=" * 80) |
| 223 | + print(f"Total Tests: {stats.total}") |
| 224 | + print(f"Passed: {stats.passed}") |
| 225 | + print(f"Failed: {stats.failed}") |
| 226 | + print(f"Errors: {stats.error}") |
| 227 | + print(f"Warnings: {stats.warnings}") |
| 228 | + print(f"Skipped: {stats.skipped}") |
| 229 | + |
| 230 | + print("\nGenerated files:") |
| 231 | + print(" - ./report/assets/ (serialized image files for console)") |
| 232 | + print(" - test_report_no_serialize.html (shows raw context)") |
| 233 | + print(" - test_report_with_serialize.html (shows embedded images)") |
| 234 | + print("\nOpen the HTML files in your browser to see the difference!") |
| 235 | + |
| 236 | + |
| 237 | +if __name__ == "__main__": |
| 238 | + main() |
0 commit comments