@@ -56,41 +56,44 @@ To do...
5656Here is a simple example of evaluating a predicted segmentation.
5757
5858``` python
59- from tifffile import imread
60- from xlwt import Workbook
61-
6259import numpy as np
60+ from xlwt import Workbook
6361
6462from segmentation_skeleton_metrics.skeleton_metric import SkeletonMetric
63+ from segmentation_skeleton_metrics.utils.img_util import TiffReader
6564
6665
6766def evaluate ():
6867 # Initializations
69- pred_labels = imread (pred_labels_path)
68+ pred_labels = TiffReader (pred_labels_path)
7069 skeleton_metric = SkeletonMetric(
71- groundtruth_path ,
72- pred_segmentation_path ,
73- pred_fragments_path = pred_fragments_path ,
70+ groundtruth_pointer ,
71+ pred_labels ,
72+ fragments_pointer = fragments_pointer ,
7473 output_dir = output_dir,
7574 )
7675 full_results, avg_results = skeleton_metric.run()
7776
7877 # Report results
79- print (f " Averaged Results..." )
80- for stat_name in avg_results.keys():
81- print (f " { stat_name } : { round (avg_results[stat_name ], 4 )} " )
78+ print (f " \n Averaged Results..." )
79+ for key in avg_results.keys():
80+ print (f " { key } : { round (avg_results[key ], 4 )} " )
8281
8382 print (f " \n Total Results... " )
8483 print (" # splits:" , np.sum(list (skeleton_metric.split_cnt.values())))
8584 print (" # merges:" , np.sum(list (skeleton_metric.merge_cnt.values())))
8685
86+ # Save results
87+ path = f " { output_dir} /evaluation_results.xls "
88+ save_results(path, full_results)
89+
8790
8891if __name__ == " __main__" :
8992 # Initializations
9093 output_dir = " ./"
91- groundtruth_path = " ./target_swcs.zip "
92- pred_segmentation_path = " ./pred_labels.tif "
93- pred_fragments_path = " ./pred_swcs .zip"
94+ pred_labels_path = " ./pred_labels.tif "
95+ fragments_pointer = " ./pred_swcs.zip "
96+ groundtruth_pointer = " ./target_swcs .zip"
9497
9598 # Run
9699 evaluate()
0 commit comments