Skip to content

Amriteshwork/FraudGuardAI

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 

Repository files navigation

FraudGuardAI - Intelligent Financial Fraud Detection using LLM and RAG

FraudGuardAI is an innovative fraud detection and regulatory compliance system that leverages the power of Large Language Models (LLMs) and Retrieval-Augmented Generation (RAG) to provide real-time fraud detection, context-aware transaction monitoring, and automated regulatory compliance checks.

Flow Diagram

flowchart TB
    subgraph Input ["Data Sources"]
        TD["Transaction Data"]
        CD["Customer Data"]
        FP["Fraud Patterns DB"]
        RD["Regulatory Docs"]
    end
    subgraph Processing ["Data Processing"]
        direction LR
        DP["Pandas/Dask Pipeline"]
        FE["Feature Engineering"]
        RS["Redis Pub/Sub"]
    end
    subgraph AI ["AI Layer"]
        direction LR
        subgraph Models ["Model Pipeline"]
            TF["Transaction Encoder<br/>(RoBERTa)"]
            TB["Temporal BERT"]
        end
        
        subgraph RAG ["RAG System"]
            VS["Vector Store<br/>(Pinecone)"]
            RC["RAG Chain"]
            CA["Context Augmentation"]
        end
        
        subgraph LLM ["LLM Pipeline"]
            CL["Claude API"]
            PE["Prompt Engineering"]
            CH["Chain of Thought"]
        end
    end
    subgraph Backend ["Application Backend"]
        direction LR
        FL["Flask API"]
        RQ["Redis Queue"]
    end
    subgraph Frontend ["Streamlit Application"]
        direction LR
        SD["Streamlit Dashboard"]
        subgraph Components ["Dashboard Components"]
            MP["Monitoring Panel"]
            AP["Analytics Views"]
            RP["Real-time Alerts"]
        end
    end
    TD --> DP
    CD --> DP
    FP --> VS
    RD --> VS
    
    DP --> FE
    FE --> RS
    
    RS --> Models
    Models --> VS
    VS --> RC
    RC --> CA
    CA --> CL
    
    CL --> PE
    PE --> CH
    
    CH --> FL
    FL --> RQ
    RQ --> RS
    
    FL --> SD
    SD --> MP
    SD --> AP
    SD --> RP
    
    classDef primary fill:#2563eb,stroke:#1d4ed8,stroke-width:2px,color:#fff
    classDef secondary fill:#4b5563,stroke:#374151,stroke-width:2px,color:#fff
    classDef modern fill:#059669,stroke:#047857,stroke-width:2px,color:#fff
    classDef frontend fill:#dc2626,stroke:#b91c1c,stroke-width:2px,color:#fff
    class TD,CD,FP,RD primary
    class DP,FE,RS,FL,RQ secondary
    class TF,TB,VS,RC,CA,CL,PE,CH modern
    class SD,MP,AP,RP frontend
Loading

Probable Data Structure (Initial perception)

erDiagram
    CUSTOMER ||--o{ TRANSACTION : has
    CUSTOMER {
        string customer_id PK
        string name
        date date_of_birth
        string email
        string phone
        string address
        date customer_since
        string account_type
        float risk_score
        string kyc_status
        date kyc_last_update
    }
    TRANSACTION {
        string transaction_id PK
        string customer_id FK
        string type
        float amount
        string currency
        datetime timestamp
        string status
        string channel
        string source_account
        string destination_account
        string description
        string ip_address
        float risk_score
        boolean flagged
    }
    CUSTOMER ||--o{ KYC_DOCUMENTS : has
    KYC_DOCUMENTS {
        string document_id PK
        string customer_id FK
        string document_type
        string document_number
        date expiry_date
        string verification_status
    }
    CUSTOMER ||--o{ BUSINESS_INFO : has
    BUSINESS_INFO {
        string business_id PK
        string customer_id FK
        string registration_number
        string industry_type
        string company_size
        string revenue_range
        json beneficial_owners
    }
Loading

Data Pipeline Architecture

flowchart LR
    subgraph Sources ["Data Sources"]
        direction TB
        TD["Transaction Data<br/>(CSV/JSON)"]
        CD["Customer Data<br/>(Database)"]
        FP["Fraud Patterns<br/>(JSON/YAML)"]
        RD["Regulatory Docs<br/>(PDF/Text)"]
    end

    subgraph Processing ["Data Processing Pipeline"]
        direction TB
        subgraph TP ["Transaction Processing"]
            TL["Data Loading"]
            TC["Cleaning"]
            TF["Feature Extraction"]
        end
        
        subgraph CP ["Customer Processing"]
            CL["Data Loading"]
            CC["Cleaning"]
            CF["Feature Extraction"]
        end
        
        subgraph FPP ["Fraud Pattern Processing"]
            FPL["Pattern Loading"]
            FPC["Pattern Conversion"]
        end
        
        subgraph RP ["Regulatory Processing"]
            RL["Document Loading"]
            RT["Text Extraction"]
            RE["Embedding Generation"]
        end
    end

    subgraph Output ["Processed Data"]
        direction TB
        CTF["Clean Transaction Features"]
        CCF["Clean Customer Features"]
        FPV["Fraud Pattern Vectors"]
        RDV["Regulatory Doc Vectors"]
    end

    TD --> TL --> TC --> TF --> CTF
    CD --> CL --> CC --> CF --> CCF
    FP --> FPL --> FPC --> FPV
    RD --> RL --> RT --> RE --> RDV

    classDef source fill:#2563eb,stroke:#1d4ed8,stroke-width:2px,color:#fff
    classDef process fill:#059669,stroke:#047857,stroke-width:2px,color:#fff
    classDef output fill:#dc2626,stroke:#b91c1c,stroke-width:2px,color:#fff
    
    class TD,CD,FP,RD source
    class TL,TC,TF,CL,CC,CF,FPL,FPC,RL,RT,RE process
    class CTF,CCF,FPV,RDV output
Loading

About

Intelligent Financial Fraud Detection using LLM and RAG

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published