Tip
If you want to learn about everything this project can do, we recommend reading the Python library section of the sqlite-utils project here.
This project wouldn’t exist without Simon Willison and his excellent sqlite-utils project. Most of this project is his code, with some minor changes made to it.
pip install apswutils
First, import the apswutils library. Through the use of the all
attribute in our Python modules by using import * we only bring in the
Database, Queryable, Table, View classes. There’s no risk of
namespace pollution.
from apswutils.db import *Then we create a SQLite database. For the sake of convienance we’re
doing it in-memory with the :memory: special string. If you wanted
something more persistent, name it something not surrounded by colons,
data.db is a common file name.
db = Database(":memory:")Let’s drop (aka ‘delete’) any tables that might exist. These docs also serve as a test harness, and we want to make certain we are starting with a clean slate. This also serves as a handy sneak preview of some of the features of this library.
for t in db.tables: t.drop()User tables are a handy way to create a useful example with some
real-world meaning. To do this, we first instantiate the users table
object:
users = Table(db, 'Users')
users<Table Users (does not exist yet)>
The table doesn’t exist yet, so let’s add some columns via the
Table.create method:
users.create(columns=dict(id=int, name=str, age=int))
users<Table Users (id, name, age)>
What if we need to change the table structure?
For example User tables often include things like password field. Let’s
add that now by calling create again, but this time with
transform=True. We should now see that the users table now has the
pwd:str field added.
users.create(columns=dict(id=int, name=str, age=int, pwd=str), transform=True, pk='id')
users<Table Users (id, name, age, pwd)>
print(db.schema)CREATE TABLE "Users" (
[id] INTEGER PRIMARY KEY,
[name] TEXT,
[age] INTEGER,
[pwd] TEXT
);
Let’s add some users to query:
users.insert(dict(name='Raven', age=8, pwd='s3cret'))
users.insert(dict(name='Magpie', age=5, pwd='supersecret'))
users.insert(dict(name='Crow', age=12, pwd='verysecret'))
users.insert(dict(name='Pigeon', age=3, pwd='keptsecret'))
users.insert(dict(name='Eagle', age=7, pwd='s3cr3t'))<Table Users (id, name, age, pwd)>
A simple unfiltered select can be executed using rows property on the
table object.
users.rows<generator object Queryable.rows_where>
Let’s iterate over that generator to see the results:
[o for o in users.rows][{'id': 1, 'name': 'Raven', 'age': 8, 'pwd': 's3cret'},
{'id': 2, 'name': 'Magpie', 'age': 5, 'pwd': 'supersecret'},
{'id': 3, 'name': 'Crow', 'age': 12, 'pwd': 'verysecret'},
{'id': 4, 'name': 'Pigeon', 'age': 3, 'pwd': 'keptsecret'},
{'id': 5, 'name': 'Eagle', 'age': 7, 'pwd': 's3cr3t'}]
Filtering can be done via the rows_where function:
[o for o in users.rows_where('age > 3')][{'id': 1, 'name': 'Raven', 'age': 8, 'pwd': 's3cret'},
{'id': 2, 'name': 'Magpie', 'age': 5, 'pwd': 'supersecret'},
{'id': 3, 'name': 'Crow', 'age': 12, 'pwd': 'verysecret'},
{'id': 5, 'name': 'Eagle', 'age': 7, 'pwd': 's3cr3t'}]
We can also limit the results:
[o for o in users.rows_where('age > 3', limit=2)][{'id': 1, 'name': 'Raven', 'age': 8, 'pwd': 's3cret'},
{'id': 2, 'name': 'Magpie', 'age': 5, 'pwd': 'supersecret'}]
The offset keyword can be combined with the limit keyword.
[o for o in users.rows_where('age > 3', limit=2, offset=1)][{'id': 2, 'name': 'Magpie', 'age': 5, 'pwd': 'supersecret'},
{'id': 3, 'name': 'Crow', 'age': 12, 'pwd': 'verysecret'}]
The offset must be used with limit or raise a ValueError:
try:
[o for o in users.rows_where(offset=1)]
except ValueError as e:
print(e)Cannot use offset without limit
If you have any SQL calls outside an explicit transaction, they are committed instantly.
To group 2 or more queries together into 1 transaction, wrap them in a BEGIN and COMMIT, executing ROLLBACK if an exception is caught:
users.get(1){'id': 1, 'name': 'Raven', 'age': 8, 'pwd': 's3cret'}
db.begin()
try:
users.delete([1])
db.execute('FNOOORD')
db.commit()
except Exception as e:
print(e)
db.rollback()near "FNOOORD": syntax error
Because the transaction was rolled back, the user was not deleted:
users.get(1){'id': 1, 'name': 'Raven', 'age': 8, 'pwd': 's3cret'}
Let’s do it again, but without the DB error, to check the transaction is successful:
db.begin()
try:
users.delete([1])
db.commit()
except Exception as e: db.rollback()try:
users.get(1)
print("Delete failed!")
except: print("Delete succeeded!")Delete succeeded!
- WAL is the default
- Setting
Database(recursive_triggers=False)works as expected - Primary keys must be set on a table for it to be a target of a foreign key
- Errors have been changed minimally, future PRs will change them incrementally
| Old/sqlite3/dbapi | New/APSW | Reason |
|---|---|---|
| IntegrityError | apsw.ConstraintError | Caused due to SQL transformation blocked on database constraints |
| sqlite3.dbapi2.OperationalError | apsw.Error | General error, OperationalError is now proxied to apsw.Error |
| sqlite3.dbapi2.OperationalError | apsw.SQLError | When an error is due to flawed SQL statements |
| sqlite3.ProgrammingError | apsw.ConnectionClosedError | Caused by an improperly closed database file |
Default values are handled as expected, including expression-based default values:
db.execute("""
DROP TABLE IF EXISTS migrations;
CREATE TABLE IF NOT EXISTS migrations (
id INTEGER PRIMARY KEY,
name TEXT DEFAULT 'foo',
cexpr TEXT DEFAULT ('abra' || 'cadabra'),
rand INTEGER DEFAULT (random()),
unix_epoch FLOAT DEFAULT (unixepoch('subsec')),
json_array JSON DEFAULT (json_array(1,2,3,4)),
inserted_at DATETIME DEFAULT CURRENT_TIMESTAMP NOT NULL
);
""")<apsw.Cursor>
migrations = Table(db, 'migrations')
migrations.default_values{'name': 'foo',
'cexpr': SQLExpr: 'abra' || 'cadabra',
'rand': SQLExpr: random(),
'unix_epoch': SQLExpr: unixepoch('subsec'),
'json_array': SQLExpr: json_array(1,2,3,4),
'inserted_at': SQLExpr: CURRENT_TIMESTAMP}
assert all([type(x) is SQLExpr for x in list(migrations.default_values.values())[1:]])migrations.insert(dict(id=0))
migrations.insert(dict(id=1))<Table migrations (id, name, cexpr, rand, unix_epoch, json_array, inserted_at)>
Default expressions are executed independently for each row on row insertion:
rows = list(migrations.rows)
rows[{'id': 0,
'name': 'foo',
'cexpr': 'abracadabra',
'rand': 8201569685582150332,
'unix_epoch': 1741481111.188,
'json_array': '[1,2,3,4]',
'inserted_at': '2025-03-09 00:45:11'},
{'id': 1,
'name': 'foo',
'cexpr': 'abracadabra',
'rand': 1625289491289542947,
'unix_epoch': 1741481111.19,
'json_array': '[1,2,3,4]',
'inserted_at': '2025-03-09 00:45:11'}]
assert rows[0]['rand'] != rows[1]['rand']