We often call APIs while prototyping and testing our code. A single API call (e.g. an Anthropic chat completion) can take 100’s of ms to run. This can really slow down development especially if our notebook contains many API calls 😞.
cachy caches API requests. It does this by saving the result of each
call to a local cachy.jsonl file. Before calling an API (e.g. OpenAI)
it will check if the request exists in cachy.jsonl. If it does it will
return the cached result.
How does it work?
Under the hood popular SDK’s like OpenAI, Anthropic and LiteLLM use
httpx.Client and httpx.AsyncClient.
cachy patches the send method of both clients and injects a simple
caching mechanism:
- create a cache key from the request
- if the key exists in
cachy.jsonlreturn the cached response - if not, call the API and save the response to
cachy.jsonl
To use cachy
- install the package:
pip install pycachy - add the snippet below to the top of your notebook
from cachy import enable_cachy
enable_cachy()By default cachy will cache requests made to OpenAI, Anthropic, Gemini
and DeepSeek.
Note: Gemini caching only works via the LiteLLM SDK.
Note
If you’re using the OpenAI or LiteLLM SDK for other LLM providers like Grok, Mistral you can cache these requests as shown below.
from cachy import enable_cachy, doms
enable_cachy(doms=doms+('api.x.ai', 'api.mistral.com'))Docs can be found hosted on this GitHub repository’s pages.
First import and enable cachy
from cachy import enable_cachyenable_cachy()Now run your api calls as normal.
from openai import OpenAIcli = OpenAI()r = cli.responses.create(model="gpt-4.1", input="Hey!")
rHey! How can I help you today? 😊
- id: resp_68b9978ecec48196aa3e77b09ed41c6403f00c61bc19c097
- created_at: 1756993423.0
- error: None
- incomplete_details: None
- instructions: None
- metadata: {}
- model: gpt-4.1-2025-04-14
- object: response
- output: [ResponseOutputMessage(id=‘msg_68b9978f9f70819684b17b0f21072a9003f00c61bc19c097’, content=[ResponseOutputText(annotations=[], text=‘Hey! How can I help you today? 😊’, type=‘output_text’, logprobs=[])], role=‘assistant’, status=‘completed’, type=‘message’)]
- parallel_tool_calls: True
- temperature: 1.0
- tool_choice: auto
- tools: []
- top_p: 1.0
- background: False
- conversation: None
- max_output_tokens: None
- max_tool_calls: None
- previous_response_id: None
- prompt: None
- prompt_cache_key: None
- reasoning: Reasoning(effort=None, generate_summary=None, summary=None)
- safety_identifier: None
- service_tier: default
- status: completed
- text: ResponseTextConfig(format=ResponseFormatText(type=‘text’), verbosity=‘medium’)
- top_logprobs: 0
- truncation: disabled
- usage: ResponseUsage(input_tokens=9, input_tokens_details=InputTokensDetails(cached_tokens=0), output_tokens=11, output_tokens_details=OutputTokensDetails(reasoning_tokens=0), total_tokens=20)
- user: None
- store: True
If you run the same request again it will read it from the cache.
r = cli.responses.create(model="gpt-4.1", input="Hey!")
rHey! How can I help you today? 😊
- id: resp_68b9978ecec48196aa3e77b09ed41c6403f00c61bc19c097
- created_at: 1756993423.0
- error: None
- incomplete_details: None
- instructions: None
- metadata: {}
- model: gpt-4.1-2025-04-14
- object: response
- output: [ResponseOutputMessage(id=‘msg_68b9978f9f70819684b17b0f21072a9003f00c61bc19c097’, content=[ResponseOutputText(annotations=[], text=‘Hey! How can I help you today? 😊’, type=‘output_text’, logprobs=[])], role=‘assistant’, status=‘completed’, type=‘message’)]
- parallel_tool_calls: True
- temperature: 1.0
- tool_choice: auto
- tools: []
- top_p: 1.0
- background: False
- conversation: None
- max_output_tokens: None
- max_tool_calls: None
- previous_response_id: None
- prompt: None
- prompt_cache_key: None
- reasoning: Reasoning(effort=None, generate_summary=None, summary=None)
- safety_identifier: None
- service_tier: default
- status: completed
- text: ResponseTextConfig(format=ResponseFormatText(type=‘text’), verbosity=‘medium’)
- top_logprobs: 0
- truncation: disabled
- usage: ResponseUsage(input_tokens=9, input_tokens_details=InputTokensDetails(cached_tokens=0), output_tokens=11, output_tokens_details=OutputTokensDetails(reasoning_tokens=0), total_tokens=20)
- user: None
- store: True