This project is a full-stack web application that allows users to upload an image of a fashion item (e.g., shirt, sneaker, bag) and classifies it using a Neural Network (NN) and Convolutional Neural Network (CNN) trained on the Fashion Classifier dataset.
The app features:
- 🔍 Real-time image classification
- ⚙️ NN and CNN model build separately
- 🧠 Robust preprocessing (resize, normalize, center the object)
- 📸 Live preview of uploaded image
- 💡 Displays top 3 predictions with confidence scores
- 🎨 Beautiful and responsive HTML/CSS interface
Want to see it in action?
👉 [Coming Soon: Deployed on Render or Hugging Face Spaces]
- Architecture: 3-layer CNN with BatchNorm, Dropout, and MaxPooling
- Input shape: 28×28 grayscale images
- Training Dataset: Fashion MNIST (60,000 training + 10,000 test images)
- Accuracy: ~91% on test data
['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat','Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
git clone https://github.com/Aronno1920/Fashion-Classifier-MNIST.git
cd fashion-classifier-mnist
2️⃣ Install requirements
pip install -r requirements.txt
3️⃣ Run the app
python app.py
Open your browser: http://127.0.0.1:5000
📁 Project Structure
├── ImageSample/ # Folder for example images or datasets
├── __pycache__/ # Python cache files (auto-generated)
├── model/
│ ├── best_nn_model.keras # Saved trained NN model weights
│ └── best_cnn_model.keras # Saved trained CNN model weights
├── notebooks/
│ ├── fashion_mnist_selim_ahmed.py # Saved colab file as python
│ └── Fashion_MNIST_Selim_Ahmed.ipynb # Saved colab file
├── static/ # logo, style and other necessary
│ ├── logo.png
│ └── style.css
├── templates/ # Templates for web app or reports (if any)
│ ├── index.html
│ └── train.html
├── templates/
├── README.md # Project description and documentation
├── app.py # Main application script (e.g., for running or serving the model)
├── model_config.py
├── train_model_cnn.py # CNN model training class
└── train_model_nn.py # NN model training class
🛠 Tech Stack
Python
TensorFlow / Keras
Flask
PIL (Pillow)
HTML5 + CSS
JavaScript (Image preview)
SciPy (for center-of-mass preprocessing)
📸 Screenshots
✍️ Author
Selim Ahmed
📫 Connect on LinkedIn
🌐 GitHub Profile