Skip to content

Atharva-System/rfp-agentic-ai

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

5 Commits
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

๐Ÿš€ RFP Agentic AI Platform

Enterprise-Grade AI-Powered RFP Response Generation System

Python FastAPI AWS Docker

CrewAI LlamaIndex OpenAI OpenSearch ChromaDB Pydantic Pandas


An intelligent, multi-agent AI platform that revolutionizes the Request for Proposal (RFP) response process using cutting-edge artificial intelligence, advanced natural language processing, and autonomous agent orchestration.

๐Ÿ“‹ Table of Contents


๐ŸŽฏ Overview

The RFP Agentic AI Platform leverages state-of-the-art AI technologies to automate and enhance the RFP response workflow. By utilizing multi-agent systems, advanced language models, and intelligent knowledge retrieval, this platform dramatically reduces the time and effort required to create high-quality, compliant proposal responses.

What Makes This Platform Unique?

  • ๐Ÿค– Multi-Agent Architecture: Specialized AI agents work collaboratively on different aspects of proposal generation
  • ๐Ÿง  Advanced RAG (Retrieval-Augmented Generation): Intelligent knowledge retrieval from your organization's past proposals and documentation
  • ๐Ÿ“Š Compliance Matrix Automation: Automated compliance checking and matrix generation
  • ๐ŸŽจ Proposal Outline Generation: AI-driven proposal structure and content organization
  • โ˜๏ธ Cloud-Native Design: Built for scalability with AWS integration
  • ๐Ÿ”’ Enterprise-Ready: Secure, scalable, and production-ready architecture

โœจ Key Features

๐ŸŽฏ Core Capabilities

  • Intelligent Proposal Generation: Automatically generate comprehensive proposal outlines and content
  • Compliance Analysis: AI-powered compliance matrix creation and requirement analysis
  • Past Performance Integration: Leverage historical project data to strengthen proposals
  • Multi-Model Support: Integration with multiple LLM providers (Claude, GPT-4, Cohere)
  • Knowledge Base Management: Advanced vector storage and semantic search capabilities
  • Real-time Collaboration: RESTful API for seamless integration with existing workflows

๐Ÿ”ง Technical Features

  • Asynchronous Processing: High-performance async operations for scalability
  • Vector Database Integration: Advanced semantic search with OpenSearch and ChromaDB
  • Document Processing: Intelligent parsing of PDFs, DOCX, and other document formats
  • Cloud Storage: Seamless integration with AWS S3 for document management
  • Observability: Built-in OpenTelemetry instrumentation for monitoring
  • Type Safety: Full Pydantic v2 validation for data integrity

๐Ÿ›  Technology Stack

Our platform is built on a foundation of cutting-edge technologies, carefully selected to deliver enterprise-grade performance, scalability, and reliability.

Core Framework & Runtime

We leverage modern Python and high-performance web frameworks to ensure optimal speed and developer productivity.

Technology Version Purpose & Benefits
Python 3.12 Latest stable Python release with enhanced performance, improved type hints, and better error messages. Provides robust foundation for AI/ML workloads
FastAPI 0.115.8 One of the fastest Python web frameworks available. Automatic API documentation, async support, and built-in data validation ensure rapid development and production-ready APIs
Uvicorn 0.34.0 Lightning-fast ASGI server with excellent performance characteristics. Handles thousands of concurrent connections efficiently
Pydantic 2.10.6 Industry-leading data validation library. Ensures type safety, automatic data parsing, and comprehensive error handling across the entire application

AI & Machine Learning Ecosystem

Our AI stack represents the state-of-the-art in language models and agent orchestration, enabling sophisticated multi-agent workflows.

Technology Version Purpose & Benefits
CrewAI 0.114.0 Revolutionary multi-agent orchestration framework. Enables multiple AI agents to collaborate on complex tasks, mimicking human team dynamics for superior proposal generation
LangChain 0.3.18 Industry-standard LLM framework. Provides powerful chains, agents, and memory systems for building sophisticated AI applications with modular, reusable components
LlamaIndex 0.12.22 Advanced data framework for LLMs. Specializes in connecting custom data sources to language models, enabling context-aware responses from your organization's knowledge base
OpenAI 1.63.2 Access to GPT-4 and GPT-4 Turbo. Industry-leading language models for natural language understanding, generation, and reasoning tasks
Anthropic 0.49.0 Claude 3.5 Sonnet integration. Provides exceptional reasoning capabilities, extended context windows (200K tokens), and superior instruction following
Cohere 5.13.12 Enterprise-grade LLM provider. Offers specialized models for embeddings, classification, and generation with excellent multilingual support
LiteLLM 1.60.2 Unified LLM interface. Seamlessly switch between different LLM providers (OpenAI, Anthropic, Cohere) with a single API, ensuring flexibility and vendor independence

AWS Cloud Services

Enterprise-grade cloud infrastructure providing scalability, security, and reliability.

Service Purpose & Benefits
Amazon Bedrock Fully managed foundation model service. Access to Claude 3.5 Sonnet and other leading models without managing infrastructure. Pay-per-use pricing and enterprise security
AWS S3 Scalable object storage. Stores documents, knowledge bases, and past performance data with 99.999999999% durability. Seamless integration with other AWS services
Amazon OpenSearch Serverless Managed vector database. Serverless architecture eliminates infrastructure management. Provides fast, accurate semantic search across millions of documents
AWS IAM Enterprise security and access control. Fine-grained permissions, role-based access, and comprehensive audit trails ensure data security and compliance

Vector Databases & Semantic Search

Multiple vector database options for optimal performance and flexibility in semantic search operations.

Technology Version Purpose & Benefits
OpenSearch 2.8.0 Production-grade vector search. Serverless deployment, automatic scaling, and sub-second query times across large document collections
ChromaDB 0.5.23 Embedded vector database. Perfect for development and testing. Simple API, fast queries, and minimal setup requirements
LanceDB 0.19.0 High-performance embedded database. Optimized for ML workloads with native support for multi-modal data and versioning
Qdrant 1.13.2 Purpose-built vector search engine. Exceptional performance for similarity search, filtering, and hybrid search scenarios

Document Processing & Intelligence

Comprehensive document processing pipeline supporting multiple formats with advanced extraction capabilities.

Technology Version Purpose & Benefits
PyMuPDF 1.25.5 High-performance PDF processing. Fast text extraction, image handling, and metadata parsing. Handles complex PDF structures with ease
PDFPlumber 0.11.5 Advanced PDF data extraction. Specialized in extracting tables, text positioning, and layout information for structured data extraction
python-docx 1.1.2 Microsoft Word document processing. Full support for .docx format including styles, tables, and embedded content
BeautifulSoup4 4.13.3 HTML/XML parsing and extraction. Robust parsing of web content and XML documents with flexible query capabilities
LlamaParse 0.6.4 AI-powered document parsing. Uses LLMs to intelligently extract and structure content from complex documents

Data Processing & Analytics

Industry-standard data processing tools for efficient data manipulation and analysis.

Technology Version Purpose & Benefits
Pandas 2.2.3 Data manipulation powerhouse. Fast, flexible data structures for analyzing structured data. Essential for processing proposal data and metrics
NumPy 1.26.4 Numerical computing foundation. Optimized array operations and mathematical functions. Powers data transformations and calculations
SQLAlchemy 2.0.38 Enterprise ORM and database toolkit. Database-agnostic ORM supporting PostgreSQL, MySQL, SQLite. Ensures data integrity and simplifies database operations
Alembic 1.14.1 Database migration management. Version control for database schemas. Enables safe, trackable database changes across environments

Observability & Monitoring

Production-grade monitoring and observability for maintaining system health and performance.

Technology Version Purpose & Benefits
OpenTelemetry Latest Industry-standard observability framework. Distributed tracing, metrics collection, and logging. Provides deep insights into system performance and bottlenecks
Rich 13.9.4 Beautiful terminal output. Enhanced logging with colors, tables, and progress bars. Improves developer experience and debugging efficiency

Authentication & Security

Enterprise-grade security infrastructure protecting sensitive proposal data and ensuring compliance.

Technology Version Purpose & Benefits
Auth0 4.8.0 Enterprise identity platform. Supports SSO, MFA, and social logins. Compliant with SOC 2, GDPR, and other security standards
PyJWT 2.10.1 JSON Web Token implementation. Secure, stateless authentication for API endpoints. Industry-standard token-based auth
Cryptography 44.0.1 Comprehensive cryptographic library. Provides encryption, hashing, and secure key management. Protects sensitive data at rest and in transit
bcrypt 4.2.1 Password hashing. Industry-standard algorithm for secure password storage. Resistant to brute-force attacks

Development & DevOps

Modern DevOps tools ensuring consistent deployments and development efficiency.

Technology Version Purpose & Benefits
Docker Latest Containerization platform. Ensures consistent environments across development, testing, and production. Simplifies deployment and scaling
Kubernetes 32.0.0 Container orchestration. Production-ready for cloud-native deployments. Auto-scaling, self-healing, and zero-downtime deployments
pytest Latest Modern testing framework. Comprehensive test coverage with fixtures, parametrization, and plugins. Ensures code quality and reliability
mypy Latest Static type checking. Catches type errors before runtime. Improves code quality and maintainability

Additional Key Technologies

Technology Version Purpose & Benefits
NLTK 3.9.1 Natural Language Processing. Advanced text processing, tokenization, and linguistic analysis for proposal content
Instructor 1.7.2 Structured LLM outputs. Ensures LLM responses conform to predefined schemas using Pydantic models
Mem0 0.1.49 Memory management for AI agents. Provides persistent memory across agent interactions for context retention
Tenacity 9.0.0 Retry logic and resilience. Handles transient failures gracefully with configurable retry strategies
tiktoken 0.7.0 Token counting for LLMs. Accurate token estimation for cost management and context window optimization

๐Ÿ— Architecture

Multi-Agent System Design

The platform employs a sophisticated multi-agent architecture where specialized AI agents collaborate to handle different aspects of proposal generation:

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚                    FastAPI Server                        โ”‚
โ”‚                  (Async REST API)                        โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
                     โ”‚
         โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
         โ”‚                       โ”‚
    โ”Œโ”€โ”€โ”€โ”€โ–ผโ”€โ”€โ”€โ”€โ”           โ”Œโ”€โ”€โ”€โ”€โ”€โ–ผโ”€โ”€โ”€โ”€โ”€โ”
    โ”‚ Crews   โ”‚           โ”‚ Knowledge โ”‚
    โ”‚ Engine  โ”‚โ—„โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ–บโ”‚   Base    โ”‚
    โ””โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”˜           โ””โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”˜
         โ”‚                      โ”‚
    โ”Œโ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”       โ”‚
    โ”‚                  โ”‚       โ”‚
โ”Œโ”€โ”€โ”€โ–ผโ”€โ”€โ”€โ”  โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ–ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”  โ”‚
โ”‚Outlineโ”‚  โ”‚  Compliance   โ”‚  โ”‚
โ”‚ Crew  โ”‚  โ”‚  Matrix Crew  โ”‚  โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜  โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜  โ”‚
                               โ”‚
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ–ผโ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚  Vector Stores (OpenSearch/Chroma)  โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

Agent Crews

  1. Proposal Outline Crew: Generates structured proposal outlines
  2. Compliance Matrix Crew: Analyzes requirements and creates compliance matrices
  3. Generic Proposal Content Crew: Generates reusable proposal content
  4. Past Performance Crew: Retrieves and formats relevant past performance data
  5. Refine Proposal Outline Crew: Iteratively improves proposal quality

๐Ÿš€ Setup & Installation

Prerequisites

  • Python 3.12 (Required)
  • pip (Python package manager)
  • AWS Account (for cloud services)
  • Docker (optional, for containerized deployment)

Recommended: Python Version Management

We recommend using pyenv for managing Python versions:

# Install pyenv (if not already installed)
curl https://pyenv.run | bash

# Install Python 3.12
pyenv install 3.12

# Set Python 3.12 for this project
pyenv local 3.12

Installation Steps

  1. Clone the Repository

    git clone <repository-url>
    cd rfp-agentic-ai-main
  2. Create Virtual Environment

    python -m venv .venv
    source .venv/bin/activate  # On Windows: .venv\Scripts\activate
  3. Install Dependencies

    pip install --upgrade pip
    pip install -r requirements.txt

โš™๏ธ Configuration

Environment Variables

Create a .env file in the project root with the following configuration:

# ============================================
# LLM Configuration
# ============================================
MODEL=bedrock/us.anthropic.claude-3-5-sonnet-20241022-v2:0

# OpenAI Configuration (Optional)
OPENAI_MODEL=gpt-4-turbo-preview
OPENAI_KEY=<your-openai-api-key>

# ============================================
# AWS Configuration
# ============================================
AWS_ACCESS_KEY_ID=<your-aws-access-key>
AWS_SECRET_ACCESS_KEY=<your-aws-secret-key>
AWS_REGION_NAME=us-east-1
AWS_DEFAULT_REGION=us-east-1

# ============================================
# AWS Services
# ============================================
# S3 Configuration
AWS_S3_BUCKET_NAME=<your-knowledge-base-bucket>
RFP_S3_BUCKET=<your-rfp-bucket>
RFP_S3_BASE_FOLDER=<base-folder-path>
pp_bucket=<past-performance-bucket>

# OpenSearch Configuration
AWS_OPENSEARCH_COLLECTION_ARN=<opensearch-collection-arn>
AWS_OPENSEARCH_SERVERLESS_COLLECTION_HOST=<opensearch-host>

# Bedrock Configuration
AWS_KNOWLEDGE_BASE_ROLE_ARN=<knowledge-base-role-arn>
AWS_EMBEDDING_MODEL_ARN=<embedding-model-arn>
AWS_EMBEDDING_MODEL_DIMENSIONS=1024

# ============================================
# Application Configuration
# ============================================
AWS_ENVIRONMENT=Development
AWS_PROJECT=rfpai-agents

AWS Setup Requirements

  1. S3 Buckets: Create buckets for knowledge base, RFPs, and past performance data
  2. OpenSearch Serverless: Set up an OpenSearch Serverless collection
  3. IAM Roles: Configure appropriate IAM roles with necessary permissions
  4. Bedrock Access: Enable Amazon Bedrock in your AWS account

๐ŸŽฎ Running the Application

Development Mode

Start the FastAPI development server with auto-reload:

fastapi dev src/serve.py

The API will be available at: http://localhost:8000

Production Mode

Run with Uvicorn for production:

uvicorn src.serve:app --host 0.0.0.0 --port 3000 --workers 4

With Gunicorn (Recommended for Production)

gunicorn src.serve:app \
  --workers 4 \
  --worker-class uvicorn.workers.UvicornWorker \
  --bind 0.0.0.0:3000 \
  --timeout 1200

๐Ÿณ Docker Deployment

Build Docker Image

docker build -t rfp-agentic-ai:latest .

Run Docker Container

docker run -d \
  --name rfp-ai-platform \
  -p 3000:3000 \
  --env-file .env \
  rfp-agentic-ai:latest

Docker Compose (Optional)

Create a docker-compose.yml for easier deployment:

version: '3.8'
services:
  rfp-ai:
    build: .
    ports:
      - "3000:3000"
    env_file:
      - .env
    restart: unless-stopped

Run with:

docker-compose up -d

๐Ÿ“š API Documentation

Once the application is running, access the interactive API documentation:

  • Swagger UI: http://localhost:8000/docs
  • ReDoc: http://localhost:8000/redoc

Key API Endpoints

  • POST /api/proposal/outline - Generate proposal outline
  • POST /api/compliance/matrix - Create compliance matrix
  • POST /api/past-performance - Retrieve past performance data
  • GET /api/health - Health check endpoint

๐Ÿค Support & Contact

For questions, issues, or feature requests, please contact our team or open an issue in the repository.


๐Ÿ“„ License

[Specify your license here]


Built with โค๏ธ using cutting-edge AI technology

Transforming RFP responses through intelligent automation

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •