This repository provides the official PyTorch implementation of "RAD: Region-Aware Diffusion Models for Image Inpainting".
- python 3.8.16, pytorch 2.0.1
- Platform: Ubuntu 22.04, CUDA 11.8
pip install -e .[torch]
python examples/unconditional_image_generation\train_RAD.py --dataset_name merkol/ffhq-256 --pretrained_model_name_or_path xutongda/adm_ffhq_256x256
python examples/unconditional_image_generation\train_RAD.py --dataset_name pcuenq/lsun-bedrooms --pretrained_model_name_or_path xutongda/adm_lsun_bedroom_256x256
python examples/unconditional_image_generation\train_RAD.py --dataset_name imagenet-1k --pretrained_model_name_or_path xutongda/adm_imagenet_256x256_unconditional
├── val_data_path
├── mask_type1
│ ├── original
│ │ ├── image_0001.png
│ │ ├── image_0002.png
│ │ └── ...
│ └─── mask
│ ├── mask_0001.png
│ ├── mask_0002.png
│ └── ...
├── mask_type2
│ ├── original
│ │ ├── image_0001.png
│ │ ├── image_0002.png
│ │ └── ...
│ └─── mask
│ ├── mask_0001.png
│ ├── mask_0002.png
│ └── ...
...python examples/unconditional_image_generation/inpaint.py --val_data_path [your validation image path] --dataset_name merkol/ffhq-256 --pretrained_model_name_or_path xutongda/adm_ffhq_256x256 --resume_from_checkpoint checkpoint-300000
python examples/unconditional_image_generation/inpaint.py --val_data_path [your validation image path] --dataset_name pcuenq/lsun-bedrooms --pretrained_model_name_or_path xutongda/adm_lsun_bedroom_256x256 --resume_from_checkpoint [your checkpoint]
python examples/unconditional_image_generation/inpaint.py --val_data_path [your validation image path] --dataset_name imagenet-1k --pretrained_model_name_or_path xutongda/adm_imagenet_256x256_unconditional --resume_from_checkpoint [your checkpoint]
@InProceedings{Kim_2025_CVPR,
author = {Kim, Sora and Suh, Sungho and Lee, Minsik},
title = {RAD: Region-Aware Diffusion Models for Image Inpainting},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2025},
pages = {2439-2448}
}The implementation is based on Diffusers.