Skip to content
forked from srk1995/RAD

Official code for the CVPR 2025 paper "RAD:Region-Aware Diffusion Models for Image Inpainting".

License

Notifications You must be signed in to change notification settings

AveryTang11/RAD

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RAD: Region-Aware Diffusion Models for Image Inpainting (CVPR 2025)

This repository provides the official PyTorch implementation of "RAD: Region-Aware Diffusion Models for Image Inpainting".

Requirements

  • python 3.8.16, pytorch 2.0.1
  • Platform: Ubuntu 22.04, CUDA 11.8

Installation

pip install -e .[torch]

Training

python examples/unconditional_image_generation\train_RAD.py --dataset_name merkol/ffhq-256 --pretrained_model_name_or_path xutongda/adm_ffhq_256x256

python examples/unconditional_image_generation\train_RAD.py --dataset_name pcuenq/lsun-bedrooms --pretrained_model_name_or_path xutongda/adm_lsun_bedroom_256x256

python examples/unconditional_image_generation\train_RAD.py --dataset_name imagenet-1k --pretrained_model_name_or_path xutongda/adm_imagenet_256x256_unconditional

Validation data structure

├── val_data_path
    ├── mask_type1
    │   ├── original
    │   │   ├── image_0001.png
    │   │   ├── image_0002.png
    │   │   └── ...
    │   └─── mask
    │       ├── mask_0001.png
    │       ├── mask_0002.png
    │       └── ...
    ├── mask_type2
    │   ├── original
    │   │   ├── image_0001.png
    │   │   ├── image_0002.png
    │   │   └── ...
    │   └─── mask
    │       ├── mask_0001.png
    │       ├── mask_0002.png
    │       └── ...
    ...

Inpainting

python examples/unconditional_image_generation/inpaint.py --val_data_path [your validation image path] --dataset_name merkol/ffhq-256 --pretrained_model_name_or_path xutongda/adm_ffhq_256x256 --resume_from_checkpoint checkpoint-300000

python examples/unconditional_image_generation/inpaint.py --val_data_path [your validation image path] --dataset_name pcuenq/lsun-bedrooms --pretrained_model_name_or_path xutongda/adm_lsun_bedroom_256x256 --resume_from_checkpoint [your checkpoint]

python examples/unconditional_image_generation/inpaint.py --val_data_path [your validation image path] --dataset_name imagenet-1k --pretrained_model_name_or_path xutongda/adm_imagenet_256x256_unconditional --resume_from_checkpoint [your checkpoint]

Reference

@InProceedings{Kim_2025_CVPR,
    author    = {Kim, Sora and Suh, Sungho and Lee, Minsik},
    title     = {RAD: Region-Aware Diffusion Models for Image Inpainting},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2025},
    pages     = {2439-2448}
}

Acknowledgements

The implementation is based on Diffusers.

About

Official code for the CVPR 2025 paper "RAD:Region-Aware Diffusion Models for Image Inpainting".

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.9%
  • Makefile 0.1%