Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -158,125 +158,7 @@
"metadata": {},
"outputs": [],
"source": [
"import requests\n",
"from typing_extensions import Self\n",
"from typing import TypedDict\n",
"from promptflow.tracing import trace\n",
"\n",
"\n",
"class ModelEndpoints:\n",
" def __init__(self: Self, env: dict, model_type: str) -> str:\n",
" self.env = env\n",
" self.model_type = model_type\n",
"\n",
" class Response(TypedDict):\n",
" query: str\n",
" response: str\n",
"\n",
" @trace\n",
" def __call__(self: Self, query: str) -> Response:\n",
" if self.model_type == \"gpt4-0613\":\n",
" output = self.call_gpt4_endpoint(query)\n",
" elif self.model_type == \"gpt35-turbo\":\n",
" output = self.call_gpt35_turbo_endpoint(query)\n",
" elif self.model_type == \"mistral7b\":\n",
" output = self.call_mistral_endpoint(query)\n",
" elif self.model_type == \"tiny_llama\":\n",
" output = self.call_tiny_llama_endpoint(query)\n",
" elif self.model_type == \"phi3_mini_serverless\":\n",
" output = self.call_phi3_mini_serverless_endpoint(query)\n",
" elif self.model_type == \"gpt2\":\n",
" output = self.call_gpt2_endpoint(query)\n",
" else:\n",
" output = self.call_default_endpoint(query)\n",
"\n",
" return output\n",
"\n",
" def query(self: Self, endpoint: str, headers: str, payload: str) -> str:\n",
" response = requests.post(url=endpoint, headers=headers, json=payload)\n",
" return response.json()\n",
"\n",
" def call_gpt4_endpoint(self: Self, query: str) -> Response:\n",
" endpoint = self.env[\"gpt4-0613\"][\"endpoint\"]\n",
" key = self.env[\"gpt4-0613\"][\"key\"]\n",
"\n",
" headers = {\"Content-Type\": \"application/json\", \"api-key\": key}\n",
"\n",
" payload = {\"messages\": [{\"role\": \"user\", \"content\": query}], \"max_tokens\": 500}\n",
"\n",
" output = self.query(endpoint=endpoint, headers=headers, payload=payload)\n",
" response = output[\"choices\"][0][\"message\"][\"content\"]\n",
" return {\"query\": query, \"response\": response}\n",
"\n",
" def call_gpt35_turbo_endpoint(self: Self, query: str) -> Response:\n",
" endpoint = self.env[\"gpt35-turbo\"][\"endpoint\"]\n",
" key = self.env[\"gpt35-turbo\"][\"key\"]\n",
"\n",
" headers = {\"Content-Type\": \"application/json\", \"api-key\": key}\n",
"\n",
" payload = {\"messages\": [{\"role\": \"user\", \"content\": query}], \"max_tokens\": 500}\n",
"\n",
" output = self.query(endpoint=endpoint, headers=headers, payload=payload)\n",
" response = output[\"choices\"][0][\"message\"][\"content\"]\n",
" return {\"query\": query, \"response\": response}\n",
"\n",
" def call_tiny_llama_endpoint(self: Self, query: str) -> Response:\n",
" endpoint = self.env[\"tiny_llama\"][\"endpoint\"]\n",
" key = self.env[\"tiny_llama\"][\"key\"]\n",
"\n",
" headers = {\"Content-Type\": \"application/json\", \"Authorization\": (\"Bearer \" + key)}\n",
"\n",
" payload = {\n",
" \"model\": \"TinyLlama/TinyLlama-1.1B-Chat-v1.0\",\n",
" \"messages\": [{\"role\": \"user\", \"content\": query}],\n",
" \"max_tokens\": 500,\n",
" \"stream\": False,\n",
" }\n",
"\n",
" output = self.query(endpoint=endpoint, headers=headers, payload=payload)\n",
" response = output[\"choices\"][0][\"message\"][\"content\"]\n",
" return {\"query\": query, \"response\": response}\n",
"\n",
" def call_phi3_mini_serverless_endpoint(self: Self, query: str) -> Response:\n",
" endpoint = self.env[\"phi3_mini_serverless\"][\"endpoint\"]\n",
" key = self.env[\"phi3_mini_serverless\"][\"key\"]\n",
"\n",
" headers = {\"Content-Type\": \"application/json\", \"Authorization\": (\"Bearer \" + key)}\n",
"\n",
" payload = {\"messages\": [{\"role\": \"user\", \"content\": query}], \"max_tokens\": 500}\n",
"\n",
" output = self.query(endpoint=endpoint, headers=headers, payload=payload)\n",
" response = output[\"choices\"][0][\"message\"][\"content\"]\n",
" return {\"query\": query, \"response\": response}\n",
"\n",
" def call_gpt2_endpoint(self: Self, query: str) -> Response:\n",
" endpoint = self.env[\"gpt2\"][\"endpoint\"]\n",
" key = self.env[\"gpt2\"][\"key\"]\n",
"\n",
" headers = {\"Content-Type\": \"application/json\", \"Authorization\": (\"Bearer \" + key)}\n",
"\n",
" payload = {\n",
" \"inputs\": query,\n",
" }\n",
"\n",
" output = self.query(endpoint=endpoint, headers=headers, payload=payload)\n",
" response = output[0][\"generated_text\"]\n",
" return {\"query\": query, \"response\": response}\n",
"\n",
" def call_mistral_endpoint(self: Self, query: str) -> Response:\n",
" endpoint = self.env[\"mistral7b\"][\"endpoint\"]\n",
" key = self.env[\"mistral7b\"][\"key\"]\n",
"\n",
" headers = {\"Content-Type\": \"application/json\", \"Authorization\": (\"Bearer \" + key)}\n",
"\n",
" payload = {\"messages\": [{\"content\": query, \"role\": \"user\"}], \"max_tokens\": 50}\n",
"\n",
" output = self.query(endpoint=endpoint, headers=headers, payload=payload)\n",
" response = output[\"choices\"][0][\"message\"][\"content\"]\n",
" return {\"query\": query, \"response\": response}\n",
"\n",
" def call_default_endpoint(query: str) -> Response:\n",
" return {\"query\": \"What is the capital of France?\", \"response\": \"Paris\"}"
"!pygmentize model_endpoints.py"
]
},
{
Expand Down Expand Up @@ -349,6 +231,7 @@
"from azure.ai.evaluation import (\n",
" RelevanceEvaluator,\n",
")\n",
"from model_endpoints import ModelEndpoints\n",
"\n",
"relevance_evaluator = RelevanceEvaluator(model_config)\n",
"\n",
Expand Down Expand Up @@ -412,7 +295,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "venv-azureai-samples",
"display_name": ".venv",
"language": "python",
"name": "python3"
},
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,119 @@
import requests
from typing_extensions import Self
from typing import TypedDict
from promptflow.tracing import trace


class ModelEndpoints:
def __init__(self: Self, env: dict, model_type: str) -> str:
self.env = env
self.model_type = model_type

class Response(TypedDict):
query: str
response: str

@trace
def __call__(self: Self, query: str) -> Response:
if self.model_type == "gpt4-0821":
output = self.call_gpt4_endpoint(query)
elif self.model_type == "gpt35-turbo":
output = self.call_gpt35_turbo_endpoint(query)
elif self.model_type == "mistral7b":
output = self.call_mistral_endpoint(query)
elif self.model_type == "tiny_llama":
output = self.call_tiny_llama_endpoint(query)
elif self.model_type == "phi3_mini_serverless":
output = self.call_phi3_mini_serverless_endpoint(query)
elif self.model_type == "gpt2":
output = self.call_gpt2_endpoint(query)
else:
output = self.call_default_endpoint(query)

return output

def query(self: Self, endpoint: str, headers: str, payload: str) -> str:
response = requests.post(url=endpoint, headers=headers, json=payload)
return response.json()

def call_gpt4_endpoint(self: Self, query: str) -> Response:
endpoint = self.env["gpt4-0821"]["endpoint"]
key = self.env["gpt4-0821"]["key"]

headers = {"Content-Type": "application/json", "api-key": key}

payload = {"messages": [{"role": "user", "content": query}], "max_tokens": 500}

output = self.query(endpoint=endpoint, headers=headers, payload=payload)
response = output["choices"][0]["message"]["content"]
return {"query": query, "response": response}

def call_gpt35_turbo_endpoint(self: Self, query: str) -> Response:
endpoint = self.env["gpt35-turbo"]["endpoint"]
key = self.env["gpt35-turbo"]["key"]

headers = {"Content-Type": "application/json", "api-key": key}

payload = {"messages": [{"role": "user", "content": query}], "max_tokens": 500}

output = self.query(endpoint=endpoint, headers=headers, payload=payload)
response = output["choices"][0]["message"]["content"]
return {"query": query, "response": response}

def call_tiny_llama_endpoint(self: Self, query: str) -> Response:
endpoint = self.env["tiny_llama"]["endpoint"]
key = self.env["tiny_llama"]["key"]

headers = {"Content-Type": "application/json", "Authorization": ("Bearer " + key)}

payload = {
"model": "TinyLlama/TinyLlama-1.1B-Chat-v1.0",
"messages": [{"role": "user", "content": query}],
"max_tokens": 500,
"stream": False,
}

output = self.query(endpoint=endpoint, headers=headers, payload=payload)
response = output["choices"][0]["message"]["content"]
return {"query": query, "response": response}

def call_phi3_mini_serverless_endpoint(self: Self, query: str) -> Response:
endpoint = self.env["phi3_mini_serverless"]["endpoint"]
key = self.env["phi3_mini_serverless"]["key"]

headers = {"Content-Type": "application/json", "Authorization": ("Bearer " + key)}

payload = {"messages": [{"role": "user", "content": query}], "max_tokens": 500}

output = self.query(endpoint=endpoint, headers=headers, payload=payload)
response = output["choices"][0]["message"]["content"]
return {"query": query, "response": response}

def call_gpt2_endpoint(self: Self, query: str) -> Response:
endpoint = self.env["gpt2"]["endpoint"]
key = self.env["gpt2"]["key"]

headers = {"Content-Type": "application/json", "Authorization": ("Bearer " + key)}

payload = {
"inputs": query,
}

output = self.query(endpoint=endpoint, headers=headers, payload=payload)
response = output[0]["generated_text"]
return {"query": query, "response": response}

def call_mistral_endpoint(self: Self, query: str) -> Response:
endpoint = self.env["mistral7b"]["endpoint"]
key = self.env["mistral7b"]["key"]

headers = {"Content-Type": "application/json", "Authorization": ("Bearer " + key)}

payload = {"messages": [{"content": query, "role": "user"}], "max_tokens": 50}

output = self.query(endpoint=endpoint, headers=headers, payload=payload)
response = output["choices"][0]["message"]["content"]
return {"query": query, "response": response}

def call_default_endpoint(query: str) -> Response:
return {"query": "What is the capital of France?", "response": "Paris"}
Loading