Skip to content
Closed
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,183 @@
# pylint: disable=line-too-long,useless-suppression
# ------------------------------------
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# ------------------------------------

"""
DESCRIPTION:
Given an AIProjectClient, this sample demonstrates how to use the synchronous
`openai.evals.*` methods to create, get and list eval group and and eval runs
using inline dataset content.

USAGE:
python sample_coherence.py

Before running the sample:

pip install azure-ai-projects azure-identity

Set these environment variables with your own values:
1) PROJECT_ENDPOINT - Required. The Azure AI Project endpoint, as found in the overview page of your
Azure AI Foundry project. It has the form: https://<account_name>.services.ai.azure.com/api/projects/<project_name>.
2) MODEL_DEPLOYMENT_NAME - Required. The name of the model deployment to use for evaluation.
"""

import os
import json
import time

from azure.identity import DefaultAzureCredential
from azure.ai.projects import AIProjectClient
from openai.types.evals.create_eval_jsonl_run_data_source_param import (
CreateEvalJSONLRunDataSourceParam,
SourceFileContent,
SourceFileContentContent
)

def main() -> None:
endpoint = os.environ[
"PROJECT_ENDPOINT"
] # Sample : https://<account_name>.services.ai.azure.com/api/projects/<project_name>
model_deployment_name = os.environ.get("MODEL_DEPLOYMENT_NAME", "") # Sample : gpt-4o-mini

with DefaultAzureCredential() as credential:
with AIProjectClient(endpoint=endpoint, credential=credential, api_version="2025-11-15-preview") as project_client:
print("Creating an OpenAI client from the AI Project client")

client = project_client.get_openai_client()
client._custom_query = {"api-version": "2025-11-15-preview"}

data_source_config = {
"type": "custom",
"item_schema": {
"type": "object",
"properties": {
"query": {
"type": "string"
},
"response": {
"type": "string"
}
},
"required": []
},
"include_sample_schema": True
}

testing_criteria = [
{
"type": "azure_ai_evaluator",
"name": "coherence",
"evaluator_name": "builtin.coherence",
"initialization_parameters": {
"deployment_name": f"{model_deployment_name}"
},
"data_mapping": {
"query": "{{item.query}}",
"response": "{{item.response}}"
}
}
]

print("Creating Eval Group")
eval_object = client.evals.create(
name="label model test with inline data",
data_source_config=data_source_config,
testing_criteria=testing_criteria,
)
print(f"Eval Group created")

print("Get Eval Group by Id")
eval_object_response = client.evals.retrieve(eval_object.id)
print("Eval Run Response:")
pprint(eval_object_response)

# Sample inline data
success_query = "What is the capital of France?"
success_response = "The capital of France is Paris."

# Failure example - incoherent response
failure_query = "What is the capital of France?"
failure_response = "France capital is... well, the city where government sits is Paris but no wait, Lyon is bigger actually maybe Rome? The French people live in many cities but the main one, I think it's definitely Paris or maybe not, depends on what you mean by capital."

print("Creating Eval Run with Inline Data")
eval_run_object = client.evals.runs.create(
eval_id=eval_object.id,
name="inline_data_run",
metadata={
"team": "eval-exp",
"scenario": "inline-data-v1"
},
data_source=CreateEvalJSONLRunDataSourceParam(
type="jsonl",
source=SourceFileContent(
type="file_content",
content= [
# Success example - coherent response
SourceFileContentContent(
item= {
"query": success_query,
"response": success_response
}
),
# Failure example - incoherent response
SourceFileContentContent(
item= {
"query": failure_query,
"response": failure_response
}
)
]
)
)
)

print(f"Eval Run created")
pprint(eval_run_object)

print("Get Eval Run by Id")
eval_run_response = client.evals.runs.retrieve(run_id=eval_run_object.id, eval_id=eval_object.id)
print("Eval Run Response:")
pprint(eval_run_response)

print("\n\n----Eval Run Output Items----\n\n")

while True:
run = client.evals.runs.retrieve(run_id=eval_run_response.id, eval_id=eval_object.id)
if run.status == "completed" or run.status == "failed":
output_items = list(client.evals.runs.output_items.list(
run_id=run.id, eval_id=eval_object.id
))
pprint(output_items)
print(f"Eval Run Status: {run.status}")
print(f"Eval Run Report URL: {run.report_url}")
break
time.sleep(5)
print("Waiting for eval run to complete...")

# [END evaluations_sample]


def _to_json_primitive(obj):
if obj is None or isinstance(obj, (str, int, float, bool)):
return obj
if isinstance(obj, (list, tuple)):
return [_to_json_primitive(i) for i in obj]
if isinstance(obj, dict):
return {k: _to_json_primitive(v) for k, v in obj.items()}
for method in ("to_dict", "as_dict", "dict", "serialize"):
if hasattr(obj, method):
try:
return _to_json_primitive(getattr(obj, method)())
except Exception:
pass
if hasattr(obj, "__dict__"):
return _to_json_primitive({k: v for k, v in vars(obj).items() if not k.startswith("_")})
return str(obj)

def pprint(str) -> None:
print(json.dumps(_to_json_primitive(str), indent=2))

if __name__ == "__main__":
main()
Original file line number Diff line number Diff line change
@@ -0,0 +1,72 @@
# pylint: disable=line-too-long,useless-suppression
# ------------------------------------
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# ------------------------------------

"""
DESCRIPTION:
Given an AIProjectClient, this sample demonstrates how to use the synchronous
`openai.evals.*` methods to create, get and list eval group and and eval runs
for Any agentic evaluator using inline dataset content.

USAGE:
python sample_generic_agentic_evaluator.py

Before running the sample:

pip install azure-ai-projects azure-identity

Set these environment variables with your own values:
1) PROJECT_ENDPOINT - Required. The Azure AI Project endpoint, as found in the overview page of your
Azure AI Foundry project. It has the form: https://<account_name>.services.ai.azure.com/api/projects/<project_name>.
2) MODEL_DEPLOYMENT_NAME - Required. The name of the model deployment to use for evaluation.
"""

import os
from utils import run_evaluator
from schema_mappings import evaluator_to_data_source_config, evaluator_to_data_mapping
from openai.types.evals.create_eval_jsonl_run_data_source_param import SourceFileContentContent


def _get_evaluator_initialization_parameters(evaluator_name: str) -> dict[str, str]:
if evaluator_name == "task_navigation_efficiency":
return {
"matching_mode": "exact_match" # Can be "exact_match", "in_order_match", or "any_order_match"
}
else:
model_deployment_name = os.environ.get(
"MODEL_DEPLOYMENT_NAME", "") # Sample : gpt-4o-mini
return {
"deployment_name": model_deployment_name
}


def _get_evaluation_contents() -> list[SourceFileContentContent]:
# Sample inline data
# Change this to add more examples for evaluation
# Use the appropriate schema based on the evaluator being used
success_query = "What is the capital of France?"
success_response = "The capital of France is Paris."

evaluation_contents = [SourceFileContentContent(
item={
"query": success_query,
"response": success_response
}
)]

return evaluation_contents

def main() -> None:
evaluator_name = "coherence" # Change to any agentic evaluator name like "relevance", "response_completeness", "task_navigation_efficiency"
data_source_config = evaluator_to_data_source_config[evaluator_name]
initialization_parameters = _get_evaluator_initialization_parameters(evaluator_name)
data_mapping = evaluator_to_data_mapping[evaluator_name]
evaluation_contents = _get_evaluation_contents()

run_evaluator(evaluator_name, evaluation_contents, data_source_config, initialization_parameters, data_mapping)


if __name__ == "__main__":
main()
Loading
Loading