Welcome to the Rock vs Mine Predictor project!
This machine learning model uses sonar signal data to predict whether an object is a rock or a mine — a classic binary classification task.
- Objective: Classify objects detected by sonar as either Rock or Mine
- Dataset: UCI Sonar Dataset (60 features per instance)
- ML Model: Logistic Regression / SVM / Random Forest (can be customized)
- Tech Used: Python, Pandas, NumPy, Scikit-learn, Jupyter Notebook
- Total Samples: 208
- Features: 60 numeric values (representing sonar signal energy)
- Target Labels:
R→ RockM→ Mine
Dataset Source: https://1drv.ms/x/c/2b0ffd83beaaf2d2/Eex_Ujmf3nhDmoB_hv6OuXsBjU-poWhxvOeJtyO4_SaEPg?e=wLhKcK
Rock-vs-Mine-Prediction-with-Python/ │
├── rock_vs_mine.ipynb # Main notebook
├── sonar.all-data.csv # Dataset file
├── README.md # This file
1. Clone the repository:
git clone https://github.com/Bhupendra-glitch/Rock-vs-Mine-Prediction-with-Python.git
2. Install required packages:
pip install pandas pip install numpy pip install scikit-learn
3. Run the notebook:
jupyter notebook rock_vs_mine.ipynb