@@ -12,16 +12,13 @@ GMSC-mapper can be used to
12
12
13
13
## Installation
14
14
15
- ### Source
16
- #### Installation path 1
17
-
18
15
Clone GMSC-mapper repository
19
16
20
17
``` bash
21
18
git clone https://github.com/BigDataBiology/GMSC-mapper.git
22
19
```
23
20
24
- Create conda environment(only support python v3.8-10 )
21
+ Create conda environment(only support python v3.8-9 )
25
22
26
23
``` bash
27
24
conda create -n gmscmapper python=3.8
@@ -40,7 +37,7 @@ The easiest way to install the dependencies is with [conda](https://conda.io):
40
37
41
38
``` bash
42
39
conda install -c conda-forge -c bioconda mmseqs2
43
- conda install -c bioconda -c conda-forge diamond
40
+ conda install -c bioconda -c conda-forge diamond=2.0.13
44
41
```
45
42
46
43
Once the dependencies are installed, you can install GMSC-mapper by running:
@@ -50,28 +47,6 @@ cd GMSC-mapper
50
47
python setup.py install
51
48
```
52
49
53
- #### Installation path 2
54
- Clone GMSC-mapper repository and execute our installation script.
55
-
56
- ``` bash
57
- git clone https://github.com/BigDataBiology/GMSC-mapper.git
58
- cd GMSC-mapper
59
- ./install.sh
60
- ```
61
-
62
- It should create a conda environment (python v3.9) called ** gmscmapper**
63
- inserted in the folder ` envs/ ` located in the GMSC-mapper main location.
64
- To call this environment:
65
-
66
- ``` bash
67
- conda activate /path/to/GMSC-mapper/envs/gmscmapper
68
- ```
69
-
70
- During the process, we install also the following dependencies:
71
-
72
- - [ MMseqs2] ( https://github.com/soedinglab/MMseqs2 )
73
- - [ Diamond] ( https://github.com/bbuchfink/diamond )
74
-
75
50
### Example test
76
51
Because the whole GMSC database is large, and takes some minutes to process.
77
52
0 commit comments