Skip to content

MLX-VLM is a package for inference and fine-tuning of Vision Language Models (VLMs) on your Mac using MLX.

License

Notifications You must be signed in to change notification settings

Blaizzy/mlx-vlm

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

412 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Upload Python Package

MLX-VLM

MLX-VLM is a package for inference and fine-tuning of Vision Language Models (VLMs) and Omni Models (VLMs with audio and video support) on your Mac using MLX.

Table of Contents

Model-Specific Documentation

Some models have detailed documentation with prompt formats, examples, and best practices:

Model Documentation
DeepSeek-OCR Docs
DeepSeek-OCR-2 Docs
GLM-OCR Docs

Installation

The easiest way to get started is to install the mlx-vlm package using pip:

pip install -U mlx-vlm

Usage

Command Line Interface (CLI)

Generate output from a model using the CLI:

# Text generation
mlx_vlm.generate --model mlx-community/Qwen2-VL-2B-Instruct-4bit --max-tokens 100 --prompt "Hello, how are you?"

# Image generation
mlx_vlm.generate --model mlx-community/Qwen2-VL-2B-Instruct-4bit --max-tokens 100 --temperature 0.0 --image http://images.cocodataset.org/val2017/000000039769.jpg

# Audio generation (New)
mlx_vlm.generate --model mlx-community/gemma-3n-E2B-it-4bit --max-tokens 100 --prompt "Describe what you hear" --audio /path/to/audio.wav

# Multi-modal generation (Image + Audio)
mlx_vlm.generate --model mlx-community/gemma-3n-E2B-it-4bit --max-tokens 100 --prompt "Describe what you see and hear" --image /path/to/image.jpg --audio /path/to/audio.wav

Chat UI with Gradio

Launch a chat interface using Gradio:

mlx_vlm.chat_ui --model mlx-community/Qwen2-VL-2B-Instruct-4bit

Python Script

Here's an example of how to use MLX-VLM in a Python script:

import mlx.core as mx
from mlx_vlm import load, generate
from mlx_vlm.prompt_utils import apply_chat_template
from mlx_vlm.utils import load_config

# Load the model
model_path = "mlx-community/Qwen2-VL-2B-Instruct-4bit"
model, processor = load(model_path)
config = load_config(model_path)

# Prepare input
image = ["http://images.cocodataset.org/val2017/000000039769.jpg"]
# image = [Image.open("...")] can also be used with PIL.Image.Image objects
prompt = "Describe this image."

# Apply chat template
formatted_prompt = apply_chat_template(
    processor, config, prompt, num_images=len(image)
)

# Generate output
output = generate(model, processor, formatted_prompt, image, verbose=False)
print(output)

Audio Example

from mlx_vlm import load, generate
from mlx_vlm.prompt_utils import apply_chat_template
from mlx_vlm.utils import load_config

# Load model with audio support
model_path = "mlx-community/gemma-3n-E2B-it-4bit"
model, processor = load(model_path)
config = model.config

# Prepare audio input
audio = ["/path/to/audio1.wav", "/path/to/audio2.mp3"]
prompt = "Describe what you hear in these audio files."

# Apply chat template with audio
formatted_prompt = apply_chat_template(
    processor, config, prompt, num_audios=len(audio)
)

# Generate output with audio
output = generate(model, processor, formatted_prompt, audio=audio, verbose=False)
print(output)

Multi-Modal Example (Image + Audio)

from mlx_vlm import load, generate
from mlx_vlm.prompt_utils import apply_chat_template
from mlx_vlm.utils import load_config

# Load multi-modal model
model_path = "mlx-community/gemma-3n-E2B-it-4bit"
model, processor = load(model_path)
config = model.config

# Prepare inputs
image = ["/path/to/image.jpg"]
audio = ["/path/to/audio.wav"]
prompt = ""

# Apply chat template
formatted_prompt = apply_chat_template(
    processor, config, prompt,
    num_images=len(image),
    num_audios=len(audio)
)

# Generate output
output = generate(model, processor, formatted_prompt, image, audio=audio, verbose=False)
print(output)

Server (FastAPI)

Start the server:

mlx_vlm.server --port 8080

# With trust remote code enabled (required for some models)
mlx_vlm.server --trust-remote-code

Server Options

  • --host: Host address (default: 0.0.0.0)
  • --port: Port number (default: 8080)
  • --trust-remote-code: Trust remote code when loading models from Hugging Face Hub

You can also set trust remote code via environment variable:

MLX_TRUST_REMOTE_CODE=true mlx_vlm.server

The server provides multiple endpoints for different use cases and supports dynamic model loading/unloading with caching (one model at a time).

Available Endpoints

  • /models - List models available locally
  • /chat/completions - OpenAI-compatible chat-style interaction endpoint with support for images, audio, and text
  • /responses - OpenAI-compatible responses endpoint
  • /health - Check server status
  • /unload - Unload current model from memory

Usage Examples

List available models
curl "http://localhost:8080/models"
Text Input
curl -X POST "http://localhost:8080/chat/completions" \
  -H "Content-Type: application/json" \
  -d '{
    "model": "mlx-community/Qwen2-VL-2B-Instruct-4bit",
    "messages": [
      {
        "role": "user",
        "content": "Hello, how are you",
      }
    ],
    "stream": true,
    "max_tokens": 100
  }'
Image Input
curl -X POST "http://localhost:8080/chat/completions" \
  -H "Content-Type: application/json" \
  -d '{
    "model": "mlx-community/Qwen2.5-VL-32B-Instruct-8bit",
    [
      {
        "role": "system",
        "content": "You are a helpful assistant."
      },
      {
        "role": "user",
        "content": [
          {
            "type": "text",
            "text": This is today's chart for energy demand in California. Can you provide an analysis of the chart and comment on the implications for renewable energy in California?"
          },
          {
            "type": "input_image",
            "image_url": "/path/to/repo/examples/images/renewables_california.png"
          }
        ]
      }
    ],
    "stream": true,
    "max_tokens": 1000
  }'
Audio Support (New)
curl -X POST "http://localhost:8080/generate" \
  -H "Content-Type: application/json" \
  -d '{
    "model": "mlx-community/gemma-3n-E2B-it-4bit",
    "messages": [
      {
        "role": "user",
        "content": [
          { "type": "text", "text": "Describe what you hear in these audio files" },
          {"type": "input_audio", "input_audio": "/path/to/audio1.wav"}
          {"type": "input_audio", "input_audio": "https://example.com/audio2.mp3"}
        ]
      }
    ],
    "stream": true,
    "max_tokens": 500
  }'
Multi-Modal (Image + Audio)
curl -X POST "http://localhost:8080/generate" \
  -H "Content-Type: application/json" \
  -d '{
    "model": "mlx-community/gemma-3n-E2B-it-4bit",
    "messages": [
      {
        "role": "user",
        "content": [
          {"type": "input_image", "image_url": "/path/to/image.jpg"},
          {"type": "input_audio", "input_audio": "/path/to/audio.wav"}
        ]
      }
    ],
    "max_tokens": 100
  }'
Responses Endpoint
curl -X POST "http://localhost:8080/responses" \
  -H "Content-Type: application/json" \
  -d '{
    "model": "mlx-community/Qwen2-VL-2B-Instruct-4bit",
    "messages": [
      {
        "role": "user",
        "content": [
          {"type": "input_text", "text": "What is in this image?"},
          {"type": "input_image", "image_url": "/path/to/image.jpg"}
        ]
      }
    ],
    "max_tokens": 100
  }'

Request Parameters

  • model: Model identifier (required)
  • messages: Chat messages for chat/OpenAI endpoints
  • max_tokens: Maximum tokens to generate
  • temperature: Sampling temperature
  • top_p: Top-p sampling parameter
  • stream: Enable streaming responses

Multi-Image Chat Support

MLX-VLM supports analyzing multiple images simultaneously with select models. This feature enables more complex visual reasoning tasks and comprehensive analysis across multiple images in a single conversation.

Usage Examples

Python Script

from mlx_vlm import load, generate
from mlx_vlm.prompt_utils import apply_chat_template
from mlx_vlm.utils import load_config

model_path = "mlx-community/Qwen2-VL-2B-Instruct-4bit"
model, processor = load(model_path)
config = model.config

images = ["path/to/image1.jpg", "path/to/image2.jpg"]
prompt = "Compare these two images."

formatted_prompt = apply_chat_template(
    processor, config, prompt, num_images=len(images)
)

output = generate(model, processor, formatted_prompt, images, verbose=False)
print(output)

Command Line

mlx_vlm.generate --model mlx-community/Qwen2-VL-2B-Instruct-4bit --max-tokens 100 --prompt "Compare these images" --image path/to/image1.jpg path/to/image2.jpg

Video Understanding

MLX-VLM also supports video analysis such as captioning, summarization, and more, with select models.

Supported Models

The following models support video chat:

  1. Qwen2-VL
  2. Qwen2.5-VL
  3. Idefics3
  4. LLaVA

With more coming soon.

Usage Examples

Command Line

mlx_vlm.video_generate --model mlx-community/Qwen2-VL-2B-Instruct-4bit --max-tokens 100 --prompt "Describe this video" --video path/to/video.mp4 --max-pixels 224 224 --fps 1.0

These examples demonstrate how to use multiple images with MLX-VLM for more complex visual reasoning tasks.

Fine-tuning

MLX-VLM supports fine-tuning models with LoRA and QLoRA.

LoRA & QLoRA

To learn more about LoRA, please refer to the LoRA.md file.

About

MLX-VLM is a package for inference and fine-tuning of Vision Language Models (VLMs) on your Mac using MLX.

Topics

Resources

License

Contributing

Stars

Watchers

Forks

Sponsor this project

 

Packages

No packages published

Contributors 65

Languages