Skip to content

BoxingWing/Bipedal-p2p-walk

Repository files navigation

Bipedal point-to-point walk training code

IsaacSim Isaac Lab License

Overview

This repository shows the training code for paper "Learning Point-to-Point Bipedal Walking Without Global Navigation" with Isaaclab.

Installation

  • Install Isaac Lab by following the installation guide. Please use Isaaclab v2.1.0 with IsaacSim 4.5.0

  • Using a python interpreter that has IsaacLab installed, install the library

cd Bipedal-p2p-walk
python -m pip install -e source/AzureLoong

Run

Training and play an agent with RSL-RL on a bipedal robot AzureLoong:

python scripts/rsl_rl/train.py --task=walk_p2p_s1 --headless
python scripts/rsl_rl/play.py --task=walk_p2p_s1 --num_envs 5

Project Structure

The project is mainly organized as follows:

Bipedal-p2p-walk/
├── cmd.txt
├── scripts/
│   └── rsl_rl/
│       ├── cli_args.py
│       ├── export.py
│       ├── play.py
│       └── train.py
└── source/
    └── AzureLoong/
        ├── AzureLoong/
            ├── assets/
            │   ├── AzureLoong.py
            │   ├── __init__.py
            │   └── Robots/
            │       ├── AzureLoong_shortFeet.usd
            │       └── configuration/
            ├── tasks/
                └── flat_walk/
                    ├── agents/
                    │   └── rsl_rl_ppo_cfg.py
                    ├── base_scripts/
                    │   ├── cfg_base.py
                    │   └── env_base.py
                    ├── cfg_p2p_s1.py
                    ├── cfg_p2p_s2.py
                    └── env_p2p_s1.py

The robot asset file is store as AzureLoong_shortFeet.usd.

Joint configurations such as stiffness and damping are configured in AzureLoong.py.

Environment settings, reward functions and corresponding scales are defined in env_p2p_s1.py and cfg_p2p_s1.py. cfg_p2p_s2.py is the second stage training config with more domain randomization.

PPO parameters are configured in rsl_rl_ppo_cfg.py.

References:

Humanoid-Gym: Reinforcement Learning for Humanoid Robot with Zero-Shot Sim2Real Transfer. https://github.com/roboterax/humanoid-gym

About

No description, website, or topics provided.

Resources

License

MIT, MIT licenses found

Licenses found

MIT
LICENCE
MIT
LICENSE

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published