Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 20 additions & 0 deletions veomni/models/transformers/gpt_oss/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,20 @@
import transformers
from transformers import (
AutoConfig,
AutoModel,
AutoModelForCausalLM,
)

from .configuration_gpt_oss import GptOssConfig
from .modeling_gpt_oss import (
GptOssForCausalLM,
GptOssModel,
)


if transformers.__version__ < "4.55.0":
AutoConfig.register("gpt_oss", GptOssConfig)
AutoModel.register(GptOssConfig, GptOssModel)
AutoModelForCausalLM.register(GptOssConfig, GptOssForCausalLM)

__all__ = ["GptOssConfig", "GptOssModel", "GptOssForCausalLM"]
119 changes: 119 additions & 0 deletions veomni/models/transformers/gpt_oss/configuration_gpt_oss.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,119 @@
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""openai model configuration"""

from transformers.configuration_utils import PretrainedConfig, layer_type_validation
from transformers.modeling_rope_utils import rope_config_validation


class GptOssConfig(PretrainedConfig):
r"""
This will yield a configuration to that of the BERT
[google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) architecture.

"""

model_type = "gpt_oss"
base_model_pp_plan = {
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
"norm": (["hidden_states"], ["hidden_states"]),
}
base_model_tp_plan = {
"layers.*.self_attn.q_proj": "colwise",
"layers.*.self_attn.k_proj": "colwise",
"layers.*.self_attn.v_proj": "colwise",
"layers.*.self_attn.o_proj": "rowwise",
"layers.*.self_attn.sinks": "local_rowwise",
"layers.*.mlp.experts": "gather",
"layers.*.mlp.router": "ep_router",
"layers.*.mlp.experts.gate_up_proj": "grouped_gemm",
"layers.*.mlp.experts.gate_up_proj_bias": "grouped_gemm",
"layers.*.mlp.experts.down_proj": "grouped_gemm",
"layers.*.mlp.experts.down_proj_bias": "grouped_gemm",
}

def __init__(
self,
num_hidden_layers: int = 36,
num_local_experts: int = 128,
vocab_size: int = 201088,
hidden_size: int = 2880,
intermediate_size: int = 2880,
head_dim: int = 64,
num_attention_heads: int = 64,
num_key_value_heads: int = 8,
sliding_window: int = 128,
rope_theta: float = 150000.0,
tie_word_embeddings=False,
hidden_act: str = "silu",
initializer_range: float = 0.02,
max_position_embeddings=131072,
rms_norm_eps: float = 1e-5,
rope_scaling={"rope_type": "yarn", "factor": 32.0, "beta_fast": 32.0, "beta_slow": 1.0, "truncate": False},
attention_dropout: float = 0.0,
num_experts_per_tok=4,
router_aux_loss_coef: float = 0.9,
output_router_logits=False,
use_cache=True,
layer_types=None,
_moe_implementation="eager",
**kwargs,
):
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_local_experts = num_local_experts
self.sliding_window = sliding_window
self.num_experts_per_tok = num_experts_per_tok
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads

self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.attention_dropout = attention_dropout
self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads
self.layer_types = layer_types
if self.layer_types is None:
self.layer_types = [
"sliding_attention" if bool((i + 1) % 2) else "full_attention" for i in range(self.num_hidden_layers)
]
layer_type_validation(self.layer_types)

# Validate the correctness of rotary position embeddings parameters
# BC: if there is a 'type' field, copy it it to 'rope_type'.
if self.rope_scaling is not None and "type" in self.rope_scaling:
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
rope_config_validation(self)

self.attention_bias = True
self.max_position_embeddings = max_position_embeddings
self.router_aux_loss_coef = router_aux_loss_coef
self.output_router_logits = output_router_logits
self.use_cache = use_cache
self._moe_implementation = _moe_implementation
super().__init__(
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)


__all__ = ["GptOssConfig"]
Loading
Loading