The goal of this project is to create a deep neural network for single image super-resolution. To solve this problem, we implement a state-of-the-art network (efficient sub-pixel convolutional neural networkESPCN) and build our own from that one (efficient deep sub-pixel convolutional neural network EDSPCN).
- Python 3
- TensorFlow
- NumPy
- SciPy
-
Training :
python3 train.py--model model: model to train, possible values : espcn, edspcn (edspcn by default)--dataset dataset: training dataset (data/General-100 by default)--batchsize batchsize: size of batch (20 by default)--epochs epochs: number of epochs (1000 by default)
-
Super-Resolution :
upscale.py--model model: model to use, possible values : espcn, edspcn (edspcn by default)--image image: input image to upscale
-
Summary of the training stage :
tensorboard --logdir models/save/*MODEL*/train


