Skip to content

CDluznie/DeepLearningSuperResolution

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Deep Learning Super-Resolution

The goal of this project is to create a deep neural network for single image super-resolution. To solve this problem, we implement a state-of-the-art network (efficient sub-pixel convolutional neural networkESPCN) and build our own from that one (efficient deep sub-pixel convolutional neural network EDSPCN).

Results

Input image :

image-bicubic

ESPCN output image :

image-bicubic

EDSPCN output image :

image-bicubic

Requirements

  • Python 3
  • TensorFlow
  • NumPy
  • SciPy

Usage

  • Training : python3 train.py

    • --model model : model to train, possible values : espcn, edspcn (edspcn by default)
    • --dataset dataset : training dataset (data/General-100 by default)
    • --batchsize batchsize : size of batch (20 by default)
    • --epochs epochs : number of epochs (1000 by default)
  • Super-Resolution : upscale.py

    • --model model : model to use, possible values : espcn, edspcn (edspcn by default)
    • --image image : input image to upscale
  • Summary of the training stage : tensorboard --logdir models/save/*MODEL*/train

About

Deep learning network model for single image super-resolution

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages