-
Notifications
You must be signed in to change notification settings - Fork 75
Add Triton + TensorRT-LLM inference example #86
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: master
Are you sure you want to change the base?
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,39 @@ | ||
| FROM nvcr.io/nvidia/tritonserver:25.10-trtllm-python-py3 | ||
|
|
||
| # Environment variables | ||
| ENV PYTHONPATH=/usr/local/lib/python3.12/dist-packages:$PYTHONPATH | ||
| ENV PYTHONDONTWRITEBYTECODE=1 | ||
| ENV DEBIAN_FRONTEND=noninteractive | ||
| ENV HF_HOME=/persistent-storage/models | ||
| ENV TORCH_CUDA_ARCH_LIST=8.6 | ||
|
|
||
| # Install system dependencies | ||
| RUN apt-get update && apt-get install -y \ | ||
| git \ | ||
| git-lfs \ | ||
| && rm -rf /var/lib/apt/lists/* | ||
|
|
||
| WORKDIR /app | ||
|
|
||
| # Install Python dependencies | ||
| RUN pip install --break-system-packages \ | ||
| huggingface_hub \ | ||
| transformers \ | ||
| || true | ||
|
|
||
| # Create required directories | ||
| RUN mkdir -p \ | ||
| /app/model_repository/llama3_2/1 \ | ||
| /persistent-storage/models \ | ||
| /persistent-storage/engines | ||
|
|
||
| # Copy application files | ||
| COPY --chmod=755 download_model.py start_triton.sh /app/ | ||
| COPY model.py /app/model_repository/llama3_2/1/ | ||
| COPY config.pbtxt /app/model_repository/llama3_2/ | ||
|
|
||
| # Expose Triton ports | ||
| EXPOSE 8000 8001 8002 | ||
|
|
||
| # Start Triton server | ||
| CMD ["/app/start_triton.sh"] |
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,28 @@ | ||
| [cerebrium.deployment] | ||
| name = "tensorrt-triton-demo" | ||
| python_version = "3.12" | ||
| disable_auth = true | ||
| include = ['./*', 'cerebrium.toml'] | ||
| exclude = ['.*'] | ||
| deployment_initialization_timeout = 830 | ||
|
|
||
| [cerebrium.hardware] | ||
| cpu = 4.0 | ||
| memory = 40.0 | ||
| compute = "AMPERE_A10" | ||
| gpu_count = 1 | ||
| provider = "aws" | ||
| region = "us-east-1" | ||
|
|
||
| [cerebrium.scaling] | ||
| min_replicas = 2 | ||
| max_replicas = 5 | ||
| cooldown = 300 | ||
| replica_concurrency = 10 | ||
| scaling_metric = "concurrency_utilization" | ||
|
|
||
| [cerebrium.runtime.custom] | ||
| port = 8000 | ||
| healthcheck_endpoint = "/v2/health/live" | ||
| readycheck_endpoint = "/v2/health/ready" | ||
| dockerfile_path = "./Dockerfile" |
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,44 @@ | ||
| name: "llama3_2" | ||
| backend: "python" | ||
| max_batch_size: 32 | ||
|
|
||
| instance_group [ | ||
| { | ||
| count: 1 | ||
| kind: KIND_GPU | ||
| } | ||
| ] | ||
|
|
||
| input [ | ||
| { | ||
| name: "text_input" | ||
| data_type: TYPE_STRING | ||
| dims: [ 1 ] | ||
| }, | ||
| { | ||
| name: "max_tokens" | ||
| data_type: TYPE_INT32 | ||
| dims: [ 1 ] | ||
| optional: true | ||
| }, | ||
| { | ||
| name: "temperature" | ||
| data_type: TYPE_FP32 | ||
| dims: [ 1 ] | ||
| optional: true | ||
| }, | ||
| { | ||
| name: "top_p" | ||
| data_type: TYPE_FP32 | ||
| dims: [ 1 ] | ||
| optional: true | ||
| } | ||
| ] | ||
|
|
||
| output [ | ||
| { | ||
| name: "text_output" | ||
| data_type: TYPE_STRING | ||
| dims: [ 1 ] | ||
| } | ||
| ] | ||
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,38 @@ | ||
| #!/usr/bin/env python3 | ||
| """ | ||
| Download HuggingFace model to persistent storage. | ||
| Only downloads if model doesn't already exist. | ||
|
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Do you run this with cerebrium run or does it run on deploy?
Author
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I thought about this but I'm also not feeling great on reinstalling packages (once through the docker file and once through toml) |
||
| """ | ||
|
|
||
| import os | ||
| from pathlib import Path | ||
| from huggingface_hub import snapshot_download, login | ||
|
|
||
| MODEL_ID = "meta-llama/Llama-3.2-3B-Instruct" | ||
| MODEL_DIR = Path("/persistent-storage/models") / MODEL_ID | ||
|
|
||
|
|
||
| def download_model(): | ||
| """Download model from HuggingFace if not already present.""" | ||
| hf_token = os.environ.get("HF_AUTH_TOKEN") | ||
|
|
||
| if not hf_token: | ||
| print("WARNING: HF_AUTH_TOKEN not set, model download may fail") | ||
| return | ||
|
|
||
| if MODEL_DIR.exists() and any(MODEL_DIR.iterdir()): | ||
| print("✓ Model already exists") | ||
| return | ||
|
|
||
| print("Downloading model from HuggingFace...") | ||
| login(token=hf_token) | ||
| snapshot_download( | ||
| MODEL_ID, | ||
| local_dir=str(MODEL_DIR), | ||
| token=hf_token | ||
| ) | ||
| print("✓ Model downloaded successfully") | ||
|
|
||
|
|
||
| if __name__ == "__main__": | ||
| download_model() | ||
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,187 @@ | ||
| """ | ||
| Triton Python Backend for TensorRT-LLM. | ||
|
|
||
| This module implements a Triton Inference Server Python backend that uses | ||
| TensorRT-LLM's PyTorch backend for optimized LLM inference. | ||
| """ | ||
|
|
||
| import numpy as np | ||
| import triton_python_backend_utils as pb_utils | ||
| import torch | ||
| from tensorrt_llm import LLM, SamplingParams, BuildConfig | ||
| from tensorrt_llm.plugin.plugin import PluginConfig | ||
| from transformers import AutoTokenizer | ||
|
|
||
| # Model configuration | ||
| MODEL_ID = "meta-llama/Llama-3.2-3B-Instruct" | ||
| MODEL_DIR = f"/persistent-storage/models/{MODEL_ID}" | ||
|
|
||
|
|
||
| class TritonPythonModel: | ||
| """ | ||
| Triton Python Backend model for TensorRT-LLM inference. | ||
|
|
||
| This class handles model initialization, inference requests, and cleanup. | ||
| """ | ||
|
|
||
| def initialize(self, args): | ||
| """ | ||
| Initialize the model - called once when Triton loads the model. | ||
|
|
||
| Loads tokenizer and initializes TensorRT-LLM with PyTorch backend. | ||
| """ | ||
| print("Loading tokenizer...") | ||
| self.tokenizer = AutoTokenizer.from_pretrained(MODEL_DIR) | ||
|
|
||
| print("Initializing TensorRT-LLM...") | ||
|
|
||
| plugin_config = PluginConfig.from_dict({ | ||
| "paged_kv_cache": True, # Efficient memory usage for KV cache | ||
| }) | ||
|
|
||
| build_config = BuildConfig( | ||
| plugin_config=plugin_config, | ||
| max_input_len=4096, | ||
| max_batch_size=32, # Matches Triton max_batch_size in config.pbtxt | ||
| ) | ||
|
|
||
| self.llm = LLM( | ||
| model=MODEL_DIR, | ||
| build_config=build_config, | ||
| tensor_parallel_size=torch.cuda.device_count(), | ||
| ) | ||
| print("✓ Model ready") | ||
|
|
||
| def execute(self, requests): | ||
| """ | ||
| Execute inference on batched requests. | ||
|
|
||
| Triton automatically batches requests (up to max_batch_size: 32). | ||
| This function processes the batch that Triton provides. | ||
| """ | ||
| try: | ||
| prompts = [] | ||
| sampling_params_list = [] | ||
| original_prompts = [] # Store original prompts to strip from output if needed | ||
|
|
||
| # Extract data from each request in the batch | ||
| for request in requests: | ||
| try: | ||
| # Get input text - handle batched tensor structures | ||
| input_tensor = pb_utils.get_input_tensor_by_name(request, "text_input") | ||
| text_array = input_tensor.as_numpy() | ||
|
|
||
| # Extract text handling different array structures (batched vs non-batched) | ||
| if text_array.ndim == 0: | ||
| # Scalar | ||
| text = text_array.item() | ||
| elif text_array.dtype == object: | ||
| # Object dtype array (common for BYTES/STRING with batching) | ||
| text = text_array.flat[0] if text_array.size > 0 else text_array.item() | ||
| else: | ||
| # Regular array - get first element | ||
| text = text_array.flat[0] if text_array.size > 0 else text_array.item() | ||
|
|
||
| # Decode if bytes, otherwise use as string | ||
| if isinstance(text, bytes): | ||
| text = text.decode('utf-8') | ||
| elif isinstance(text, np.str_): | ||
| text = str(text) | ||
|
|
||
| # Get optional parameters with defaults | ||
| max_tokens = 1024 | ||
| if pb_utils.get_input_tensor_by_name(request, "max_tokens") is not None: | ||
| max_tokens_array = pb_utils.get_input_tensor_by_name(request, "max_tokens").as_numpy() | ||
| max_tokens = int(max_tokens_array.item() if max_tokens_array.ndim == 0 else max_tokens_array.flat[0]) | ||
|
|
||
| temperature = 0.8 | ||
| if pb_utils.get_input_tensor_by_name(request, "temperature") is not None: | ||
| temp_array = pb_utils.get_input_tensor_by_name(request, "temperature").as_numpy() | ||
| temperature = float(temp_array.item() if temp_array.ndim == 0 else temp_array.flat[0]) | ||
|
|
||
| top_p = 0.95 | ||
| if pb_utils.get_input_tensor_by_name(request, "top_p") is not None: | ||
| top_p_array = pb_utils.get_input_tensor_by_name(request, "top_p").as_numpy() | ||
| top_p = float(top_p_array.item() if top_p_array.ndim == 0 else top_p_array.flat[0]) | ||
|
|
||
| # Format prompt using chat template | ||
| prompt = self.tokenizer.apply_chat_template( | ||
| [{"role": "user", "content": text}], | ||
| tokenize=False, | ||
| add_generation_prompt=True | ||
| ) | ||
|
|
||
| prompts.append(prompt) | ||
| original_prompts.append(prompt) # Store for potential stripping | ||
| sampling_params_list.append(SamplingParams( | ||
| temperature=temperature, | ||
| top_p=top_p, | ||
| max_tokens=max_tokens, | ||
| )) | ||
| except Exception as e: | ||
| print(f"Error processing request: {e}", flush=True) | ||
| import traceback | ||
| traceback.print_exc() | ||
| # Use default max_tokens instead of 1 to avoid single token output | ||
| prompts.append("") | ||
| original_prompts.append("") | ||
| sampling_params_list.append(SamplingParams(max_tokens=1024)) | ||
|
|
||
| # Batch inference | ||
| if not prompts: | ||
| return [] | ||
|
|
||
| outputs = self.llm.generate(prompts, sampling_params_list) | ||
|
|
||
| # Create responses | ||
| responses = [] | ||
| for i, output in enumerate(outputs): | ||
| try: | ||
| # Extract generated text | ||
| generated_text = output.outputs[0].text | ||
|
|
||
| # Remove the prompt from generated text if it's included | ||
| if original_prompts[i] and original_prompts[i] in generated_text: | ||
| generated_text = generated_text.replace(original_prompts[i], "").strip() | ||
|
|
||
| responses.append(pb_utils.InferenceResponse( | ||
| output_tensors=[pb_utils.Tensor( | ||
| "text_output", | ||
| np.array([generated_text.encode('utf-8')], dtype=object) | ||
| )] | ||
| )) | ||
| except Exception as e: | ||
| print(f"Error creating response {i}: {e}", flush=True) | ||
| responses.append(pb_utils.InferenceResponse( | ||
| output_tensors=[pb_utils.Tensor( | ||
| "text_output", | ||
| np.array([f"Error: {str(e)}".encode('utf-8')], dtype=object) | ||
| )] | ||
| )) | ||
|
|
||
| return responses | ||
|
|
||
| except Exception as e: | ||
| print(f"Error in execute: {e}", flush=True) | ||
| import traceback | ||
| traceback.print_exc() | ||
| # Return error responses | ||
| return [ | ||
| pb_utils.InferenceResponse( | ||
| output_tensors=[pb_utils.Tensor( | ||
| "text_output", | ||
| np.array([f"Batch error: {str(e)}".encode('utf-8')], dtype=object) | ||
| )] | ||
| ) | ||
| for _ in requests | ||
| ] | ||
|
|
||
| def finalize(self): | ||
| """ | ||
| Cleanup when model is being unloaded. | ||
|
|
||
| Shuts down the TensorRT-LLM engine and clears GPU memory. | ||
| """ | ||
| if hasattr(self, 'llm'): | ||
| self.llm.shutdown() | ||
| torch.cuda.empty_cache() |
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,14 @@ | ||
| #!/bin/bash | ||
| set -e | ||
|
|
||
| # Download model if not already present | ||
| echo "Checking for model..." | ||
| python3 /app/download_model.py | ||
|
|
||
| # Start Triton Inference Server | ||
| echo "Starting Triton Inference Server..." | ||
| exec tritonserver \ | ||
| --model-repository=/app/model_repository \ | ||
| --http-port=8000 \ | ||
| --grpc-port=8001 \ | ||
| --metrics-port=8002 |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
prompt?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
This is only for configuring the shapes and other params. System prompt would have to come directly in the model.py