Skip to content

CipherSingularity/deep-learning

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

4 Commits
Β 
Β 
Β 
Β 

Repository files navigation

Deep Learning Journey

Python PyTorch TensorFlow License Status

A comprehensive repository documenting my deep learning journey with implementations, concepts, and practical projects.


πŸ“š Learning Path

Phase Topic Time Priority Status
Phase 1 Neural Network Foundations 2-3 weeks πŸ”΄ Critical ⬜
Phase 2 CNNs 2-3 weeks 🟠 High ⬜
Phase 3 Transformers 3-4 weeks πŸ”΄ Critical ⬜
Phase 4 Generative AI 3-4 weeks πŸ”΄ Critical ⬜
Phase 5 Training & Deployment 2 weeks 🟠 High ⬜
Phase 6 RNNs (Optional) 1-2 weeks 🟑 Medium ⬜
Phase 7 Reinforcement Learning 2-3 weeks 🟠 High ⬜
Phase 8 Explainable AI 1-2 weeks 🟑 Medium ⬜
Phase 9 Advanced Topics 2-3 weeks 🟒 Low ⬜
Phase 10 Real-World Projects Ongoing πŸ”΄ Critical ⬜

πŸ“‹ Detailed Topics

1️⃣ Neural Network Foundations
  • Perceptron & Multi-Layer Perceptron (MLP)
  • Activation Functions (ReLU, Sigmoid, Tanh)
  • Loss Functions & Optimizers (SGD, Adam)
  • Backpropagation Algorithm

Resources:

2️⃣ Convolutional Neural Networks (CNNs)
  • Convolution & Pooling Operations
  • Architecture: ResNet, VGG, EfficientNet
  • Object Detection (YOLO, R-CNN)
  • Image Segmentation (U-Net, Mask R-CNN)

Resources:

3️⃣ Recurrent Neural Networks (RNNs)
  • LSTM & GRU Architectures
  • Sequence Modeling & NLP
  • Time-Series Forecasting
  • Attention Mechanisms

Resources:

4️⃣ Transformers ⭐ (Most Important)
  • Self-Attention Mechanism
  • Multi-Head Attention
  • Large Language Models (GPT, LLaMA, BERT)
  • Vision Transformers (ViT)

Resources:

5️⃣ Generative AI πŸ”₯
  • Generative Adversarial Networks (GANs)
  • Diffusion Models (DDPM, Stable Diffusion)
  • Text-to-Image Generation
  • Fine-Tuning & LoRA Techniques

Resources:

6️⃣ Reinforcement Learning
  • Q-Learning & Deep Q-Networks (DQN)
  • Policy Gradients (REINFORCE, A3C)
  • PPO & RLHF (Reinforcement Learning from Human Feedback)

Resources:

7️⃣ Training & Deployment
  • Hyperparameter Tuning & Grid Search
  • Model Quantization & Pruning
  • MLOps, CI/CD, Model Monitoring
  • Docker & Kubernetes for ML

Resources:

8️⃣ Explainable AI
  • SHAP (SHapley Additive exPlanations)
  • LIME (Local Interpretable Model-agnostic Explanations)
  • Feature Attribution Methods
  • Model Interpretability

Resources:

9️⃣ Advanced Concepts
  • Meta-Learning (Learning to Learn)
  • Contrastive Learning (SimCLR, MoCo)
  • Multimodal Vision-Language Models (CLIP, LLaVA)
  • Few-Shot & Zero-Shot Learning

Resources:

πŸ”Ÿ Real-World Applications
  • Natural Language Processing (NLP)
  • Computer Vision Applications
  • Healthcare AI & Medical Imaging
  • Finance & Fraud Detection
  • Recommendation Systems

Projects:

  • Build a chatbot with LLMs
  • Create an image classifier
  • Develop a recommendation engine
  • Medical image segmentation

πŸ› οΈ Tech Stack

Core Frameworks

PyTorch TensorFlow Keras scikit-learn

Programming & Data Science

Python NumPy Pandas Jupyter

Visualization

Matplotlib Plotly Seaborn

Development Tools

Google Colab VS Code Git GitHub

MLOps & Deployment

Docker Kubernetes FastAPI Streamlit

Experiment Tracking & Cloud

Weights & Biases MLflow Google Cloud

Specialized Libraries

Hugging Face OpenCV ONNX Ray

πŸ“‚ Repository Structure

β”œβ”€β”€ 01-fundamentals/          # Neural network basics
β”œβ”€β”€ 02-cnns/                  # Convolutional networks
β”œβ”€β”€ 03-rnns/                  # Recurrent networks
β”œβ”€β”€ 04-transformers/          # Transformer models
β”œβ”€β”€ 05-generative-ai/         # GANs, Diffusion, LLMs
β”œβ”€β”€ 06-reinforcement-learning/# RL implementations
β”œβ”€β”€ 07-deployment/            # MLOps & model serving
β”œβ”€β”€ 08-explainable-ai/        # XAI techniques
β”œβ”€β”€ 09-advanced/              # Advanced topics
β”œβ”€β”€ 10-projects/              # Real-world projects
└── resources/                # Papers, notes, datasets

πŸš€ Getting Started

# Clone the repository
git clone https://github.com/yourusername/deep-learning.git

# Navigate to the directory
cd deep-learning-journey

# Install dependencies
pip install -r requirements.txt

# Launch Jupyter Notebook
jupyter notebook

                         START HERE

    β”œβ”€β”€β”€ 1️⃣ NEURAL NETWORK FOUNDATIONS ─────────────────────────┐
    β”‚    β€’ Perceptron & MLP                                     β”‚
    β”‚    β€’ Activation Functions (ReLU, Sigmoid, GELU)           β”‚
    β”‚    β€’ Loss Functions & Optimizers (SGD, Adam, AdamW)       β”‚
    β”‚    β€’ Backpropagation & Gradient Descent                   β”‚
    β”‚                                                           β”‚
    β”œβ”€β”€β”€ 2️⃣ CNNs ────────────────────────────────────────────────
    β”‚    β€’ Convolution & Pooling                                β”‚
    β”‚    β€’ ResNet, VGG, EfficientNet                            β”‚
    β”‚    β€’ Object Detection (YOLO, Faster R-CNN)                β”‚
    β”‚    β€’ Image Segmentation (UNet, Mask R-CNN)                β”‚
    β”‚                                                           β”‚
    β”œβ”€β”€β”€ 3️⃣ RNNs ───────────────────────────────────────────────
    β”‚    β€’ LSTM & GRU                                           β”‚
    β”‚    β€’ Sequence Modeling                                    β”‚
    β”‚    β€’ Time-Series Forecasting                              β”‚
    β”‚                                                           β”‚
    β”œβ”€β”€β”€ 4️⃣ TRANSFORMERS ⭐ (MOST IMPORTANT) ───────────────────
    β”‚    β€’ Self-Attention & Multi-Head Attention                β”‚
    β”‚    β€’ Positional Encoding                                  β”‚
    β”‚    β€’ LLMs: GPT, LLaMA, BERT                               β”‚
    β”‚    β€’ Vision Transformers (ViT)                            β”‚
    β”‚                                                           β”‚
    β”œβ”€β”€β”€ 5️⃣ GENERATIVE AI πŸ”₯ (TOP SKILL 2025) ──────────────────
    β”‚    β€’ GANs (DCGAN, StyleGAN)                               β”‚
    β”‚    β€’ Diffusion Models (Stable Diffusion, FLUX)            β”‚
    β”‚    β€’ Text-to-Image & Text-to-Video                        β”‚
    β”‚    β€’ Prompt Engineering & Fine-Tuning (LoRA, PEFT)        β”‚
    β”‚                                                           β”‚
    β”œβ”€β”€β”€ 6️⃣ REINFORCEMENT LEARNING ─────────────────────────────
    β”‚    β€’ Q-Learning & Deep Q-Networks (DQN)                   β”‚
    β”‚    β€’ Policy Gradients (PPO, A3C, SAC)                     β”‚
    β”‚    β€’ RLHF (Reinforcement Learning from Human Feedback)    β”‚
    β”‚                                                           β”‚
    β”œβ”€β”€β”€ 7️⃣ TRAINING & DEPLOYMENT 🚒 ───────────────────────────
    β”‚    β€’ Hyperparameter Tuning & Regularization               β”‚
    β”‚    β€’ Quantization, Pruning, Distillation                  β”‚
    β”‚    β€’ MLOps (MLflow, Kubernetes, Docker)                   β”‚
    β”‚    β€’ Model Formats (ONNX, TensorRT)                       β”‚
    β”‚                                                           β”‚
    β”œβ”€β”€β”€ 8️⃣ EXPLAINABLE AI πŸ” ──────────────────────────────────
    β”‚    β€’ SHAP & LIME                                          β”‚
    β”‚    β€’ Integrated Gradients                                 β”‚
    β”‚    β€’ Feature Attribution Methods                          β”‚
    β”‚                                                           β”‚
    β”œβ”€β”€β”€ 9️⃣ ADVANCED CONCEPTS πŸŽ“ ───────────────────────────────
    β”‚    β€’ Meta-Learning (MAML)                                 β”‚
    β”‚    β€’ Contrastive Learning (SimCLR, CLIP)                  β”‚
    β”‚    β€’ Multimodal Learning (VLMs)                           β”‚
    β”‚    β€’ Federated Learning                                   β”‚
    β”‚                                                           β”‚
    └─── πŸ”Ÿ REAL-WORLD APPLICATIONS πŸ’Ό β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
    |     β€’ NLP & Computer Vision                               β”‚
    |     β€’ Healthcare & Finance AI                             β”‚
    |     β€’ Recommendation Systems                              β”‚
    |     β€’ Speech Processing                                   β”‚
    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ 

graph TD
    Start([πŸš€ Start Here]) --> Spacer1[ ]
    Spacer1 --> A[1️⃣ Neural Network Foundations]
    
    A --> A1[Perceptron & MLP]
    A --> A2[Activation Functions]
    A --> A3[Loss Functions & Optimizers]
    A --> A4[Backpropagation]
    
    A --> Spacer2[ ]
    Spacer2 --> B[2️⃣ CNNs]
    B --> B1[Convolution & Pooling]
    B --> B2[ResNet, VGG, EfficientNet]
    B --> B3[Object Detection]
    B --> B4[Image Segmentation]
    
    A --> C[3️⃣ RNNs]
    C --> C1[LSTM & GRU]
    C --> C2[Sequence Modeling]
    C --> C3[Time-Series]
    
    B --> Spacer3[ ]
    Spacer3 --> D[4️⃣ Transformers ⭐]
    C --> D
    D --> D1[Self-Attention]
    D --> D2[Multi-Head Attention]
    D --> D3[LLMs: GPT, LLaMA]
    D --> D4[Vision Transformers]
    
    D --> Spacer4[ ]
    Spacer4 --> E[5️⃣ Generative AI πŸ”₯]
    E --> E1[GANs & StyleGAN]
    E --> E2[Diffusion Models]
    E --> E3[Text-to-Image]
    E --> E4[Fine-Tuning & LoRA]
    
    A --> F[6️⃣ Reinforcement Learning]
    F --> F1[Q-Learning & DQN]
    F --> F2[Policy Gradients]
    F --> F3[PPO & RLHF]
    
    D --> G[7️⃣ Training & Deployment]
    E --> G
    G --> G1[Hyperparameter Tuning]
    G --> G2[Quantization & Pruning]
    G --> G3[MLOps & CI/CD]
    
    G --> Spacer5[ ]
    Spacer5 --> H[8️⃣ Explainable AI]
    H --> H1[SHAP & LIME]
    H --> H2[Feature Attribution]
    
    D --> I[9️⃣ Advanced Concepts]
    E --> I
    I --> I1[Meta-Learning]
    I --> I2[Contrastive Learning]
    I --> I3[Multimodal VLMs]
    
    B --> J[πŸ”Ÿ Real-World Applications]
    D --> J
    E --> J
    F --> J
    J --> J1[NLP & Computer Vision]
    J --> J2[Healthcare & Finance]
    J --> J3[Recommendation Systems]
    
    J --> Spacer6[ ]
    Spacer6 --> End([🎯 Job Ready!])
    
    style Start fill:#4CAF50,stroke:#2E7D32,color:#fff
    style A fill:#2196F3,stroke:#1565C0,color:#fff
    style D fill:#FF9800,stroke:#E65100,color:#fff
    style E fill:#F44336,stroke:#C62828,color:#fff
    style G fill:#9C27B0,stroke:#6A1B9A,color:#fff
    style J fill:#00BCD4,stroke:#00838F,color:#fff
    style End fill:#4CAF50,stroke:#2E7D32,color:#fff
    style Spacer1 fill:none,stroke:none
    style Spacer2 fill:none,stroke:none
    style Spacer3 fill:none,stroke:none
    style Spacer4 fill:none,stroke:none
    style Spacer5 fill:none,stroke:none
    style Spacer6 fill:none,stroke:none

Loading

πŸ“§ Contact


⭐ Star this repo if you find it helpful! Happy Learning! πŸš€

About

transformer-to-production

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published