@@ -427,7 +427,7 @@ Conversion of aerobic metabolic heat generation to carbon dioxide generation:
427427$$
428428\begin{align}
429429& C_6H_{12}O_6+6O_2 \rightarrow 6CO_2 +6H_2O+2872kJ/\text{mol} \cdot \text{glucose} \\
430- & 2872kJ/\text{mol}\ \text{glucose} \times\frac{1 \text{mol}\ \text{glucose}}{6\text{mol} \ CO_2}= 478.7kJ/\text{mol}\ CO_2 \rightarrow0.00209\text{mol}\ CO_2 /kJ\\
430+ & 2872kJ/\text{mol}\ \text{glucose} \times\frac{1 \text{mol}\ \text{glucose}}{6\text{mol} \ CO_2}= 478.7kJ/\text{mol}\ CO_2 \rightarrow0.00209\text{mol}\ CO_2 /kJ \\
431431& \frac{0.00209\text{mol}\ CO_2 }{kJ}\times \frac{5843kJ}{h}(Q_{koji})=12.2\text{mol}\ CO_2 /h
432432\end{align}
433433$$
@@ -436,14 +436,14 @@ We can convert to volumetric CO₂ generation using the ideal gas law:
436436
437437$$
438438\dot{V}_{CO_2,koji}=\frac{\dot{n}RT}{P}\\
439- \dot{V}_{CO_2,koji} =12.2\text{mol}\ CO_2 /h\times\frac{(8.314J\text{mol}^{-1}K^{-1})(303.15K)}{101300Pa}\\
439+ \dot{V}_{CO_2,koji} =12.2\text{mol}\ CO_2 /h\times\frac{(8.314J\text{mol}^{-1}K^{-1})(303.15K)}{101300Pa} \\
440440\dot{V}_{CO_2,koji} = 0.304m^3/h
441441$$
442442
443443Mass balance on carbon dioxide:
444444
445445$$
446- CO_2 \text{ generated by koji} = CO_2 \text{ removed by ventilation}\\
446+ CO_2 \text{ generated by koji} = CO_2 \text{ removed by ventilation} \\
447447\dot{V}_{CO_2,koji} =\dot{V}(C_1-C_2)
448448$$
449449
@@ -457,7 +457,7 @@ Where,
457457Our mass balance becomes:
458458
459459$$
460- 0.304m^3/h = \dot{V}(0.004500-0.000500)\\
460+ 0.304m^3/h = \dot{V}(0.004500-0.000500) \\
461461\dot{V}=75.9m^3/h
462462$$
463463
@@ -476,7 +476,7 @@ Where $Q_{heater}$ = heat required by the heater
476476Our heat balance becomes:
477477
478478$$
479- 1623W + Q_{heater} =763W + (0.03317kg\ \text{dry air}/s)(78.3kJ/kg - 11.78kJ/kg)\cdot(\frac{1000W}{kJ/s})\\
479+ 1623W + Q_{heater} =763W + (0.03317kg\ \text{dry air}/s)(78.3kJ/kg - 11.78kJ/kg)\cdot(\frac{1000W}{kJ/s}) \\
480480Q_{heater} = 1621W
481481$$
482482
0 commit comments