Skip to content

Commit 6e06922

Browse files
authored
fix the year of LDTE paper (#82)
1 parent 40e41a8 commit 6e06922

File tree

5 files changed

+7
-7
lines changed

5 files changed

+7
-7
lines changed

CITATION.cff

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -90,6 +90,6 @@ references:
9090
given-names: Tatsushi
9191
- family-names: Yasui
9292
given-names: Shota
93-
year: 2024
93+
year: 2025
9494
url: "https://arxiv.org/abs/2509.15594"
9595
repository: "arXiv:2509.15594"

README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -34,7 +34,7 @@ This package implements methods from the following research papers:
3434
- **Hirata, T., Byambadalai, U., Oka, T., Yasui, S., & Uto, S.** (2025). *Efficient and Scalable Estimation of Distributional Treatment Effects with Multi-Task Neural Networks*. [arXiv:2507.07738](https://arxiv.org/abs/2507.07738)
3535

3636
### Imperfect Compliance
37-
- **Byambadalai, U., Hirata, T., Oka, T., & Yasui, S.** (2024). *Beyond the Average: Distributional Causal Inference under Imperfect Compliance*. [arXiv:2509.15594](https://arxiv.org/abs/2509.15594)
37+
- **Byambadalai, U., Hirata, T., Oka, T., & Yasui, S.** (2025). *Beyond the Average: Distributional Causal Inference under Imperfect Compliance*. [arXiv:2509.15594](https://arxiv.org/abs/2509.15594)
3838

3939
## Citation
4040

docs/source/api/local.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@ This page documents local distribution treatment effect estimators that compute
55

66
Local distribution treatment effects (LDTE) and local probability treatment effects (LPTE) provide methods for causal inference that account for treatment assignment vs. treatment receipt differences. For theoretical foundations on imperfect compliance scenarios, see:
77

8-
* Byambadalai, U., Hirata, T., Oka, T., & Yasui, S. (2024). *Beyond the Average: Distributional Causal Inference under Imperfect Compliance*. `arXiv:2509.15594 <https://arxiv.org/abs/2509.15594>`_.
8+
* Byambadalai, U., Hirata, T., Oka, T., & Yasui, S. (2025). *Beyond the Average: Distributional Causal Inference under Imperfect Compliance*. `arXiv:2509.15594 <https://arxiv.org/abs/2509.15594>`_.
99

1010
SimpleLocalDistributionEstimator
1111
--------------------------------

docs/source/api_reference.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -14,7 +14,7 @@ The dte_adj package provides several types of estimators for computing distribut
1414
* **Utility Functions**: Helper functions for confidence intervals and statistical computations
1515
* **Plotting Utilities**: Visualization tools for treatment effects and distributions
1616

17-
For theoretical foundations, see Byambadalai et al. (2024) [#simple2024]_ for simple randomization, Byambadalai et al. (2025) [#car2025]_ for covariate-adaptive randomization, and Byambadalai et al. (2024) [#compliance2024]_ for imperfect compliance scenarios.
17+
For theoretical foundations, see Byambadalai et al. (2024) [#simple2024]_ for simple randomization, Byambadalai et al. (2025) [#car2025]_ for covariate-adaptive randomization, and Byambadalai et al. (2024) [#compliance2025]_ for imperfect compliance scenarios.
1818

1919
For multi-task learning approaches that train models for all locations simultaneously (using ``is_multi_task=True``), see the neural network framework in [#multitask2025]_.
2020

@@ -24,7 +24,7 @@ For multi-task learning approaches that train models for all locations simultane
2424
2525
.. [#multitask2025] Hirata, T., Byambadalai, U., Oka, T., Yasui, S., & Uto, S. (2025). Efficient and Scalable Estimation of Distributional Treatment Effects with Multi-Task Neural Networks. arXiv preprint `arXiv:2507.07738 <https://arxiv.org/abs/2507.07738>`_.
2626
27-
.. [#compliance2024] Byambadalai, U., Hirata, T., Oka, T., & Yasui, S. (2024). Beyond the Average: Distributional Causal Inference under Imperfect Compliance. arXiv preprint `arXiv:2509.15594 <https://arxiv.org/abs/2509.15594>`_.
27+
.. [#compliance2025] Byambadalai, U., Hirata, T., Oka, T., & Yasui, S. (2025). Beyond the Average: Distributional Causal Inference under Imperfect Compliance. arXiv preprint `arXiv:2509.15594 <https://arxiv.org/abs/2509.15594>`_.
2828
2929
Detailed Documentation
3030
----------------------

docs/source/index.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -30,15 +30,15 @@ For theoretical foundations, see:
3030
* **Simple randomization**: Byambadalai et al. (2024) [#simple2024]_
3131
* **Covariate-adaptive randomization**: Byambadalai et al. (2025) [#car2025]_
3232
* **Multi-task learning**: Hirata et al. (2025) [#multitask2025]_
33-
* **Imperfect compliance**: Byambadalai et al. (2024) [#compliance2024]_
33+
* **Imperfect compliance**: Byambadalai et al. (2024) [#compliance2025]_
3434

3535
.. [#simple2024] Byambadalai, U., Oka, T., & Yasui, S. (2024). Estimating Distributional Treatment Effects in Randomized Experiments: Machine Learning for Variance Reduction. In Proceedings of the 41st International Conference on Machine Learning (ICML'24). `arXiv:2407.16037 <https://arxiv.org/abs/2407.16037>`_.
3636
3737
.. [#car2025] Byambadalai, U., Hirata, T., Oka, T., & Yasui, S. (2025). On Efficient Estimation of Distributional Treatment Effects under Covariate-Adaptive Randomization. In Proceedings of the 42nd International Conference on Machine Learning (ICML'25). `arXiv:2506.05945 <https://arxiv.org/abs/2506.05945>`_.
3838
3939
.. [#multitask2025] Hirata, T., Byambadalai, U., Oka, T., Yasui, S., & Uto, S. (2025). Efficient and Scalable Estimation of Distributional Treatment Effects with Multi-Task Neural Networks. arXiv preprint `arXiv:2507.07738 <https://arxiv.org/abs/2507.07738>`_.
4040
41-
.. [#compliance2024] Byambadalai, U., Hirata, T., Oka, T., & Yasui, S. (2024). Beyond the Average: Distributional Causal Inference under Imperfect Compliance. arXiv preprint `arXiv:2509.15594 <https://arxiv.org/abs/2509.15594>`_.
41+
.. [#compliance2025] Byambadalai, U., Hirata, T., Oka, T., & Yasui, S. (2025). Beyond the Average: Distributional Causal Inference under Imperfect Compliance. arXiv preprint `arXiv:2509.15594 <https://arxiv.org/abs/2509.15594>`_.
4242
4343
.. toctree::
4444
:maxdepth: 1

0 commit comments

Comments
 (0)