Skip to content

Commit f65f379

Browse files
authored
add citation.cff (#58)
Signed-off-by: TomeHirata <[email protected]>
1 parent 5dce874 commit f65f379

File tree

2 files changed

+103
-0
lines changed

2 files changed

+103
-0
lines changed

CITATION.cff

Lines changed: 75 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,75 @@
1+
cff-version: 1.2.0
2+
message: "If you use this software, please cite it as below."
3+
type: software
4+
title: "dte_adj: A Python Package for Estimating Distribution Treatment Effects"
5+
version: 0.1.7
6+
date-released: 2024-12-01
7+
url: "https://github.com/CyberAgentAILab/python-dte-adjustment"
8+
repository-code: "https://github.com/CyberAgentAILab/python-dte-adjustment"
9+
abstract: "A Python package for estimating distribution treatment effects in randomized experiments. It provides APIs for conducting regression adjustment to estimate precise distribution functions, enabling deeper insights beyond average treatment effects through machine learning-enhanced estimation methods."
10+
license: MIT
11+
authors:
12+
- family-names: Byambadalai
13+
given-names: Undral
14+
- family-names: Hirata
15+
given-names: Taiki
16+
- family-names: Oka
17+
given-names: Tatsushi
18+
- family-names: Yasui
19+
given-names: Shota
20+
preferred-citation:
21+
type: article
22+
title: "Estimating Distributional Treatment Effects in Randomized Experiments: Machine Learning for Variance Reduction"
23+
authors:
24+
- family-names: Byambadalai
25+
given-names: Undral
26+
- family-names: Oka
27+
given-names: Tatsushi
28+
- family-names: Yasui
29+
given-names: Shota
30+
year: 2024
31+
url: "https://arxiv.org/abs/2407.16037"
32+
repository: "arXiv:2407.16037"
33+
references:
34+
- type: article
35+
title: "Estimating Distributional Treatment Effects in Randomized Experiments: Machine Learning for Variance Reduction"
36+
authors:
37+
- family-names: Byambadalai
38+
given-names: Undral
39+
- family-names: Oka
40+
given-names: Tatsushi
41+
- family-names: Yasui
42+
given-names: Shota
43+
year: 2024
44+
url: "https://arxiv.org/abs/2407.16037"
45+
repository: "arXiv:2407.16037"
46+
- type: article
47+
title: "On Efficient Estimation of Distributional Treatment Effects under Covariate-Adaptive Randomization"
48+
authors:
49+
- family-names: Byambadalai
50+
given-names: Undral
51+
- family-names: Hirata
52+
given-names: Taiki
53+
- family-names: Oka
54+
given-names: Tatsushi
55+
- family-names: Yasui
56+
given-names: Shota
57+
year: 2025
58+
url: "https://arxiv.org/abs/2506.05945"
59+
repository: "arXiv:2506.05945"
60+
- type: article
61+
title: "Efficient and Scalable Estimation of Distributional Treatment Effects with Multi-Task Neural Networks"
62+
authors:
63+
- family-names: Hirata
64+
given-names: Taiki
65+
- family-names: Byambadalai
66+
given-names: Undral
67+
- family-names: Oka
68+
given-names: Tatsushi
69+
- family-names: Yasui
70+
given-names: Shota
71+
- family-names: Uto
72+
given-names: Sho
73+
year: 2025
74+
url: "https://arxiv.org/abs/2507.07738"
75+
repository: "arXiv:2507.07738"

README.md

Lines changed: 28 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -20,6 +20,34 @@
2020
## Basic Usage
2121
Examples of how to use this package are available in [this Get-started Guide](https://cyberagentailab.github.io/python-dte-adjustment/get_started.html).
2222

23+
## Theoretical Foundations
24+
25+
This package implements methods from the following research papers:
26+
27+
### Simple Randomization
28+
- **Byambadalai, U., Oka, T., & Yasui, S.** (2024). *Estimating Distributional Treatment Effects in Randomized Experiments: Machine Learning for Variance Reduction*. [arXiv:2407.16037](https://arxiv.org/abs/2407.16037)
29+
30+
### Covariate-Adaptive Randomization
31+
- **Byambadalai, U., Hirata, T., Oka, T., & Yasui, S.** (2025). *On Efficient Estimation of Distributional Treatment Effects under Covariate-Adaptive Randomization*. [arXiv:2506.05945](https://arxiv.org/abs/2506.05945)
32+
33+
### Multi-Task Learning
34+
- **Hirata, T., Byambadalai, U., Oka, T., Yasui, S., & Uto, S.** (2025). *Efficient and Scalable Estimation of Distributional Treatment Effects with Multi-Task Neural Networks*. [arXiv:2507.07738](https://arxiv.org/abs/2507.07738)
35+
36+
## Citation
37+
38+
If you use this software in your research, please cite our work:
39+
40+
```bibtex
41+
@article{byambadalai2024estimating,
42+
title={Estimating Distributional Treatment Effects in Randomized Experiments: Machine Learning for Variance Reduction},
43+
author={Byambadalai, Undral and Oka, Tatsushi and Yasui, Shota},
44+
journal={arXiv preprint arXiv:2407.16037},
45+
year={2024}
46+
}
47+
```
48+
49+
For other citation formats, see our [CITATION.cff](CITATION.cff) file.
50+
2351
## Development
2452
We welcome contributions to the project! Please review our [Contribution Guide](CONTRIBUTING.md) for details on how to get started.
2553

0 commit comments

Comments
 (0)