Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion CITATION.cff
Original file line number Diff line number Diff line change
Expand Up @@ -90,6 +90,6 @@ references:
given-names: Tatsushi
- family-names: Yasui
given-names: Shota
year: 2024
year: 2025
url: "https://arxiv.org/abs/2509.15594"
repository: "arXiv:2509.15594"
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -34,7 +34,7 @@ This package implements methods from the following research papers:
- **Hirata, T., Byambadalai, U., Oka, T., Yasui, S., & Uto, S.** (2025). *Efficient and Scalable Estimation of Distributional Treatment Effects with Multi-Task Neural Networks*. [arXiv:2507.07738](https://arxiv.org/abs/2507.07738)

### Imperfect Compliance
- **Byambadalai, U., Hirata, T., Oka, T., & Yasui, S.** (2024). *Beyond the Average: Distributional Causal Inference under Imperfect Compliance*. [arXiv:2509.15594](https://arxiv.org/abs/2509.15594)
- **Byambadalai, U., Hirata, T., Oka, T., & Yasui, S.** (2025). *Beyond the Average: Distributional Causal Inference under Imperfect Compliance*. [arXiv:2509.15594](https://arxiv.org/abs/2509.15594)

## Citation

Expand Down
2 changes: 1 addition & 1 deletion docs/source/api/local.rst
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@ This page documents local distribution treatment effect estimators that compute

Local distribution treatment effects (LDTE) and local probability treatment effects (LPTE) provide methods for causal inference that account for treatment assignment vs. treatment receipt differences. For theoretical foundations on imperfect compliance scenarios, see:

* Byambadalai, U., Hirata, T., Oka, T., & Yasui, S. (2024). *Beyond the Average: Distributional Causal Inference under Imperfect Compliance*. `arXiv:2509.15594 <https://arxiv.org/abs/2509.15594>`_.
* Byambadalai, U., Hirata, T., Oka, T., & Yasui, S. (2025). *Beyond the Average: Distributional Causal Inference under Imperfect Compliance*. `arXiv:2509.15594 <https://arxiv.org/abs/2509.15594>`_.

SimpleLocalDistributionEstimator
--------------------------------
Expand Down
4 changes: 2 additions & 2 deletions docs/source/api_reference.rst
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@ The dte_adj package provides several types of estimators for computing distribut
* **Utility Functions**: Helper functions for confidence intervals and statistical computations
* **Plotting Utilities**: Visualization tools for treatment effects and distributions

For theoretical foundations, see Byambadalai et al. (2024) [#simple2024]_ for simple randomization, Byambadalai et al. (2025) [#car2025]_ for covariate-adaptive randomization, and Byambadalai et al. (2024) [#compliance2024]_ for imperfect compliance scenarios.
For theoretical foundations, see Byambadalai et al. (2024) [#simple2024]_ for simple randomization, Byambadalai et al. (2025) [#car2025]_ for covariate-adaptive randomization, and Byambadalai et al. (2024) [#compliance2025]_ for imperfect compliance scenarios.

For multi-task learning approaches that train models for all locations simultaneously (using ``is_multi_task=True``), see the neural network framework in [#multitask2025]_.

Expand All @@ -24,7 +24,7 @@ For multi-task learning approaches that train models for all locations simultane

.. [#multitask2025] Hirata, T., Byambadalai, U., Oka, T., Yasui, S., & Uto, S. (2025). Efficient and Scalable Estimation of Distributional Treatment Effects with Multi-Task Neural Networks. arXiv preprint `arXiv:2507.07738 <https://arxiv.org/abs/2507.07738>`_.

.. [#compliance2024] Byambadalai, U., Hirata, T., Oka, T., & Yasui, S. (2024). Beyond the Average: Distributional Causal Inference under Imperfect Compliance. arXiv preprint `arXiv:2509.15594 <https://arxiv.org/abs/2509.15594>`_.
.. [#compliance2025] Byambadalai, U., Hirata, T., Oka, T., & Yasui, S. (2025). Beyond the Average: Distributional Causal Inference under Imperfect Compliance. arXiv preprint `arXiv:2509.15594 <https://arxiv.org/abs/2509.15594>`_.

Detailed Documentation
----------------------
Expand Down
4 changes: 2 additions & 2 deletions docs/source/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -30,15 +30,15 @@ For theoretical foundations, see:
* **Simple randomization**: Byambadalai et al. (2024) [#simple2024]_
* **Covariate-adaptive randomization**: Byambadalai et al. (2025) [#car2025]_
* **Multi-task learning**: Hirata et al. (2025) [#multitask2025]_
* **Imperfect compliance**: Byambadalai et al. (2024) [#compliance2024]_
* **Imperfect compliance**: Byambadalai et al. (2024) [#compliance2025]_

.. [#simple2024] Byambadalai, U., Oka, T., & Yasui, S. (2024). Estimating Distributional Treatment Effects in Randomized Experiments: Machine Learning for Variance Reduction. In Proceedings of the 41st International Conference on Machine Learning (ICML'24). `arXiv:2407.16037 <https://arxiv.org/abs/2407.16037>`_.

.. [#car2025] Byambadalai, U., Hirata, T., Oka, T., & Yasui, S. (2025). On Efficient Estimation of Distributional Treatment Effects under Covariate-Adaptive Randomization. In Proceedings of the 42nd International Conference on Machine Learning (ICML'25). `arXiv:2506.05945 <https://arxiv.org/abs/2506.05945>`_.

.. [#multitask2025] Hirata, T., Byambadalai, U., Oka, T., Yasui, S., & Uto, S. (2025). Efficient and Scalable Estimation of Distributional Treatment Effects with Multi-Task Neural Networks. arXiv preprint `arXiv:2507.07738 <https://arxiv.org/abs/2507.07738>`_.

.. [#compliance2024] Byambadalai, U., Hirata, T., Oka, T., & Yasui, S. (2024). Beyond the Average: Distributional Causal Inference under Imperfect Compliance. arXiv preprint `arXiv:2509.15594 <https://arxiv.org/abs/2509.15594>`_.
.. [#compliance2025] Byambadalai, U., Hirata, T., Oka, T., & Yasui, S. (2025). Beyond the Average: Distributional Causal Inference under Imperfect Compliance. arXiv preprint `arXiv:2509.15594 <https://arxiv.org/abs/2509.15594>`_.

.. toctree::
:maxdepth: 1
Expand Down