Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
42 changes: 42 additions & 0 deletions all_glosses/data_selection.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,42 @@

import math
import torch
import torch.nn as nn
from collections import Counter
from torch import Tensor
import io
import time
import os
import pandas as pd
import json
from datetime import datetime



def read(text_info, mms_info):
data_list = []
(text_directory, text_encoding) = text_info
print("text_directory: ", text_directory)
(mms_directory, mms_encoding) = mms_info
for filenumber in os.listdir(text_directory):
f = os.path.join(mms_directory, filenumber+".mms")
try:
df = pd.read_csv(f, na_filter=False, encoding=mms_encoding) # to overcome nan problem in dom and ndom glosses
except FileNotFoundError as e:
print(f"WARNING: Text file exists while mms file does not, skipping: {e}")
continue

text_address = os.path.join(text_directory, filenumber, "gebaerdler.Text_Deutsch.annotation~")
file = open(text_address, encoding=text_encoding)
lines = file.readlines()
text_line = ""
for i, text_data in enumerate(lines):
if i>0:
text_line = text_line + " " + text_data.replace("\n", "").split(";")[2]
else:
text_line = text_line + text_data.replace("\n", "").split(";")[2]
glosses = df["maingloss"] + "_" + df["domgloss"] + "_" + df["ndomgloss"]
gloss_line = " ".join(glosses.tolist())
data_dict = {"file_ID":filenumber, "text": text_line, "gloss": gloss_line}
data_list.append(data_dict)
return data_list
96 changes: 96 additions & 0 deletions all_glosses/datasets.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,96 @@
import math
import torch
from torch import Tensor
import io
import time
import os
import pandas as pd
import json
from datetime import datetime
import pickle
from pathlib import Path
from torch.utils.data import Dataset
from collections import Counter
from torch.nn.utils.rnn import pad_sequence
import torchtext
from torchtext.data.utils import get_tokenizer
from collections import Counter
from torchtext.vocab import vocab
import numpy as np
from transformers import AutoTokenizer
import torch.nn.functional as F
from pathlib import Path
from . import data_selection

mms_directories = [
("mms-subset91", 'latin-1'),
("modified/location/mms", 'utf-8'),
("modified/platform/mms", 'utf-8'),
("modified/time/mms", 'utf-8'),
("modified/train_name/mms", 'utf-8'),
]
text_directories = [
("annotations_full/annotations", 'latin-1'),
("modified/location/text", 'utf-8'),
("modified/platform/text", 'utf-8'),
("modified/time/text", 'utf-8'),
("modified/train_name/text", 'utf-8'),
]

checkpoint = 'facebook/nllb-200-distilled-600M' #for nllb
tokenizer = AutoTokenizer.from_pretrained(checkpoint)

def read():
data_list_only_original = []
data_list_only_modified = []
for i, text_info in enumerate(text_directories):
mms_info = mms_directories[i]
data_list_one = data_selection.read(text_info, mms_info)
if i <= 0:
data_list_only_original += data_list_one
else:
data_list_only_modified += data_list_one

data_list_full = data_list_only_original + data_list_only_modified

return (data_list_only_original, data_list_only_modified, data_list_full)


class SignLanguageDataset(Dataset):
def __init__(self, data_list, tokenizer, max_length=512):
self.data_list = data_list
self.tokenizer = tokenizer
self.max_length = max_length
self.vocab_size = len(tokenizer)

def __len__(self):
return len(self.data_list)

def __getitem__(self, idx):
data = self.data_list[idx]
file_Id = data['file_ID']
text_tokens = self.tokenizer.encode(data['text'], add_special_tokens=True)
text_tokens = torch.tensor(text_tokens)

maingloss_tokens = self.tokenizer.encode(''.join(data['gloss']).lower(), add_special_tokens=True)
maingloss_tokens = torch.tensor(maingloss_tokens)

return file_Id, text_tokens, maingloss_tokens

return file_Id, text_tokens, gloss_tokens


def collate_fn(batch):
file_Id, text_tokens, gloss_tokens = zip(*batch)
padding_value = tokenizer.pad_token_id # here for nllb paddign token is 1

text_tokens_padded = torch.nn.utils.rnn.pad_sequence(text_tokens, batch_first=True, padding_value=padding_value)
gloss_tokens_padded = torch.nn.utils.rnn.pad_sequence(gloss_tokens, batch_first=True, padding_value=padding_value)

# Ensure all have the same sequence length
max_len = max(text_tokens_padded.size(1), gloss_tokens_padded.size(1))

text_tokens_padded = torch.nn.functional.pad(text_tokens_padded, (0, max_len - text_tokens_padded.size(1)), value=padding_value)
gloss_tokens_padded = torch.nn.functional.pad(gloss_tokens_padded, (0, max_len - gloss_tokens_padded.size(1)), value=padding_value)

return file_Id, text_tokens_padded, gloss_tokens_padded
Loading