Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
71 changes: 44 additions & 27 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,33 +11,46 @@ This repository only collects papers related to Deepfake Detection. If you are a

## Contents

- [Datasets](#datasets)
- [Competitions](#competitions)
- [Tools](#tools)
- [Recent Conference Papers](#recent-conference-papers)
- [Survey](#survey)
- [Spatiotemporal Based](#spatiotemporal-based)
- [Frequency Based](#frequency-based)
- [Generalization](#generalization)
- [Interpretability](#interpretability)
- [Human-Decision](#human-decision)
- [Localization](#localization)
- [Multi-modal Based](#multi-modal-based)
- [Biological Signal](#biological-signal)
- [Robustness](#robustness)
- [Fairness](#fairness)
- [Fingerprint/Watermark](#fingerprint-watermark)
- [Identity-Related](#identity-related)
- [Adversarial Attack](#adversarial-attack)
- [Real Scenario](#real-scenario)
- [Anomaly Detection](#anomaly-detection)
- [Self-Supervised Learning](#self-supervised-learning)
- [Source Model Attribution](#source-model-attribution)
- [Multiclass Classification](#multiclass-classification)
- [Federated Learning](#federated-learning)
- [Knowledge Distillation](#knowledge-distillation)
- [Meta-Learning](#meta-learning)
- [Depth Based](#depth-based)
- [Awesome Deepfakes Detection](#awesome-deepfakes-detection)
- [Contents](#contents)
- [Datasets](#datasets)
- [Video Datasets](#video-datasets)
- [Image Datasets](#image-datasets)
- [Competitions](#competitions)
- [Tools](#tools)
- [Recent Conference Papers](#recent-conference-papers)
- [CVPR](#cvpr)
- [ICCV](#iccv)
- [ECCV](#eccv)
- [NeurIPS](#neurips)
- [ICLR](#iclr)
- [ICML](#icml)
- [IJCAI](#ijcai)
- [AAAI](#aaai)
- [MM](#mm)
- [Survey](#survey)
- [Spatiotemporal Based](#spatiotemporal-based)
- [Frequency Based](#frequency-based)
- [Generalization](#generalization)
- [Interpretability](#interpretability)
- [Human-Decision](#human-decision)
- [Localization](#localization)
- [Multi-modal Based](#multi-modal-based)
- [Biological Signal](#biological-signal)
- [Robustness](#robustness)
- [Fairness](#fairness)
- [Fingerprint Watermark](#fingerprint-watermark)
- [Identity-Related](#identity-related)
- [Adversarial Attack](#adversarial-attack)
- [Real Scenario](#real-scenario)
- [Anomaly Detection](#anomaly-detection)
- [Self-Supervised Learning](#self-supervised-learning)
- [Source Model Attribution](#source-model-attribution)
- [Multiclass Classification](#multiclass-classification)
- [Federated Learning](#federated-learning)
- [Knowledge Distillation](#knowledge-distillation)
- [Meta-Learning](#meta-learning)
- [Depth Based](#depth-based)

## Datasets

Expand All @@ -58,6 +71,7 @@ This repository only collects papers related to Deepfake Detection. If you are a
* **ForgeryNet**: ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis. [Paper](https://arxiv.org/abs/2103.05630) [Download](https://github.com/yinanhe/forgerynet)
* **WLDR**: Protecting World Leaders Against Deep Fakes. [Paper](https://openaccess.thecvf.com/content_CVPRW_2019/papers/Media%20Forensics/Agarwal_Protecting_World_Leaders_Against_Deep_Fakes_CVPRW_2019_paper.pdf)
* **FakeAVCeleb**: FakeAVCeleb: A Novel Audio-Video Multimodal Deepfake Dataset. [Paper](https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/d9d4f495e875a2e075a1a4a6e1b9770f-Paper-round2.pdf) [Download](https://github.com/DASH-Lab/FakeAVCeleb)
* **IDForge**: IDForge: An Identity-driven Multimedia Forgery Dataset. [Paper](https://arxiv.org/abs/2401.11764) [Download](https://github.com/xyyandxyy/IDForge)

| | Real Videos | Fake Videos | Year | Note |
| :-----------------: | :---------: | :---------: | :--: | :----------------------------------------------------------: |
Expand All @@ -75,6 +89,7 @@ This repository only collects papers related to Deepfake Detection. If you are a
| Wild-Deepfake | 3,805 | 3,509 | 2021 | collect from Internet |
| ForgeryNet | 99,630 | 121,617 | 2021 | 8 video-level generation methods, add perturbations |
| FakeAVCeleb | 500 | 19,500 | 2021 | audio-visual multi-modalies dataset |
| IDForge | 79,827+214,438 (Ref) | 169,311 | 2024 | multi-modalies dataset with extra identity information, high quality |


### Image Datasets
Expand Down Expand Up @@ -266,6 +281,7 @@ This repository only collects papers related to Deepfake Detection. If you are a
* Sharp Multiple Instance Learning for DeepFake Video Detection, *ACM MM* 2020: [Paper](https://dl.acm.org/doi/pdf/10.1145/3394171.3414034)
* DeepRhythm: Exposing DeepFakes with Attentional Visual Heartbeat Rhythms, *ACM MM* 2020: [Paper](https://dl.acm.org/doi/10.1145/3394171.3413707)
* Emotions Don't Lie: An Audio-Visual Deepfake Detection Method using Affective Cues, *ACM MM* 2020: [Paper](https://dl.acm.org/doi/abs/10.1145/3394171.3413570)
* Identity-Driven Multimedia Forgery Detection via Reference Assistance, *ACM MM 2024*: [Paper](https://arxiv.org/abs/2401.11764)



Expand Down Expand Up @@ -454,6 +470,7 @@ This repository only collects papers related to Deepfake Detection. If you are a
* Detecting Deep-Fake Videos from Appearance and Behavior, *WIFS* 2020: [Paper](https://ieeexplore.ieee.org/abstract/document/9360904/)
* Identity-Driven DeepFake Detection, *arXiv* 2020: [Paper](https://arxiv.org/abs/2012.03930)
* Protecting World Leaders Against Deep Fakes, *CVPR Workshop* 2019: [Paper](https://openaccess.thecvf.com/content_CVPRW_2019/papers/Media%20Forensics/Agarwal_Protecting_World_Leaders_Against_Deep_Fakes_CVPRW_2019_paper.pdf)
* Identity-Driven Multimedia Forgery Detection via Reference Assistance, *ACM MM 2024*: [Paper](https://arxiv.org/abs/2401.11764)



Expand Down