Skip to content

feat(crashtracking): report unhandled exceptions#1596

Open
gyuheon0h wants to merge 1 commit intogyuheon0h/crash-ping-kindfrom
02-18-gyuheon0h_report-unhandled-exceptions
Open

feat(crashtracking): report unhandled exceptions#1596
gyuheon0h wants to merge 1 commit intogyuheon0h/crash-ping-kindfrom
02-18-gyuheon0h_report-unhandled-exceptions

Conversation

@gyuheon0h
Copy link
Contributor

@gyuheon0h gyuheon0h commented Feb 18, 2026

What does this PR do?

This PR adds support for applications to report unhandled exceptions through the libdatadog crashtracking infrastructure.

I expose an API report_unhandled_exception which takes in a complete stacktrace, optional exception message, and optional exception type. It then uses pre-existing functionality to pipe over this data along with other data collected by the crashtracker itself to the receiver, generating a crash report for unhandled exceptions.

I decide to reuse the current emit code logic and add a stacktrace field, and make signal specific fields optional, and have conditional logic to decide what to emit. This lets us keep the report generation unified making sure that there is no drift.

Another design choice could have been implementing a separate flow to create the crash report for the unhandled exception and upload it directly to an endpoint, but I prefer to reuse a slightly modified emit flow, to minimize drift and ensure parity between to two different "types" of crash reports.

Motivation

PR below on the stack: #1595
PR above on the stack: FFI PR WIP

Additional Notes

Anything else we should know when reviewing?

How to test the change?

Unit test, bin test, instrument application and emit a crash report for an unhandled exception

Copy link
Contributor Author

Warning

This pull request is not mergeable via GitHub because a downstack PR is open. Once all requirements are satisfied, merge this PR as a stack on Graphite.
Learn more

This stack of pull requests is managed by Graphite. Learn more about stacking.

@gyuheon0h gyuheon0h changed the title gyuheon0h/report-unhandled-exceptions feat(crashtracking): report unhandled exceptions Feb 18, 2026
@github-actions
Copy link

github-actions bot commented Feb 18, 2026

📚 Documentation Check Results

⚠️ 1001 documentation warning(s) found

📦 libdd-crashtracker - 1001 warning(s)


Updated: 2026-02-18 05:50:21 UTC | Commit: d35b0db | missing-docs job results

@github-actions
Copy link

Clippy Allow Annotation Report

Comparing clippy allow annotations between branches:

Summary by Rule

Rule Base Branch PR Branch Change
unwrap_used 12 12 No change (0%)
Total 12 12 No change (0%)

Annotation Counts by File

File Base Branch PR Branch Change
libdd-crashtracker/src/collector/emitters.rs 12 12 No change (0%)

Annotation Stats by Crate

Crate Base Branch PR Branch Change
clippy-annotation-reporter 5 5 No change (0%)
datadog-ffe-ffi 1 1 No change (0%)
datadog-ipc 27 27 No change (0%)
datadog-live-debugger 6 6 No change (0%)
datadog-live-debugger-ffi 10 10 No change (0%)
datadog-profiling-replayer 4 4 No change (0%)
datadog-remote-config 3 3 No change (0%)
datadog-sidecar 59 59 No change (0%)
libdd-common 10 10 No change (0%)
libdd-common-ffi 12 12 No change (0%)
libdd-crashtracker 12 12 No change (0%)
libdd-data-pipeline 6 6 No change (0%)
libdd-ddsketch 2 2 No change (0%)
libdd-dogstatsd-client 1 1 No change (0%)
libdd-profiling 13 13 No change (0%)
libdd-telemetry 19 19 No change (0%)
libdd-tinybytes 4 4 No change (0%)
libdd-trace-normalization 2 2 No change (0%)
libdd-trace-obfuscation 9 9 No change (0%)
libdd-trace-utils 15 15 No change (0%)
Total 220 220 No change (0%)

About This Report

This report tracks Clippy allow annotations for specific rules, showing how they've changed in this PR. Decreasing the number of these annotations generally improves code quality.

@github-actions
Copy link

github-actions bot commented Feb 18, 2026

🔒 Cargo Deny Results

⚠️ 2 issue(s) found, showing only errors (advisories, bans, sources)

📦 libdd-crashtracker - 2 error(s)

Show output
error[vulnerability]: Integer overflow in `BytesMut::reserve`
   ┌─ /home/runner/work/libdatadog/libdatadog/Cargo.lock:21:1
   │
21 │ bytes 1.8.0 registry+https://github.com/rust-lang/crates.io-index
   │ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ security vulnerability detected
   │
   ├ ID: RUSTSEC-2026-0007
   ├ Advisory: https://rustsec.org/advisories/RUSTSEC-2026-0007
   ├ In the unique reclaim path of `BytesMut::reserve`, the condition
     ```rs
     if v_capacity >= new_cap + offset
     ```
     uses an unchecked addition. When `new_cap + offset` overflows `usize` in release builds, this condition may incorrectly pass, causing `self.cap` to be set to a value that exceeds the actual allocated capacity. Subsequent APIs such as `spare_capacity_mut()` then trust this corrupted `cap` value and may create out-of-bounds slices, leading to UB.
     
     This behavior is observable in release builds (integer overflow wraps), whereas debug builds panic due to overflow checks.
     
     ## PoC
     
     ```rs
     use bytes::*;
     
     fn main() {
         let mut a = BytesMut::from(&b"hello world"[..]);
         let mut b = a.split_off(5);
     
         // Ensure b becomes the unique owner of the backing storage
         drop(a);
     
         // Trigger overflow in new_cap + offset inside reserve
         b.reserve(usize::MAX - 6);
     
         // This call relies on the corrupted cap and may cause UB & HBO
         b.put_u8(b'h');
     }
     ```
     
     # Workarounds
     
     Users of `BytesMut::reserve` are only affected if integer overflow checks are configured to wrap. When integer overflow is configured to panic, this issue does not apply.
   ├ Announcement: https://github.com/advisories/GHSA-434x-w66g-qw3r
   ├ Solution: Upgrade to >=1.11.1 (try `cargo update -p bytes`)
   ├ bytes v1.8.0
     ├── http v1.1.0
     │   ├── http-body v1.0.1
     │   │   ├── http-body-util v0.1.2
     │   │   │   ├── libdd-common v1.1.0
     │   │   │   │   ├── (build) libdd-crashtracker v1.0.0
     │   │   │   │   └── libdd-telemetry v2.0.0
     │   │   │   │       └── libdd-crashtracker v1.0.0 (*)
     │   │   │   └── libdd-telemetry v2.0.0 (*)
     │   │   ├── hyper v1.6.0
     │   │   │   ├── hyper-rustls v0.27.3
     │   │   │   │   └── libdd-common v1.1.0 (*)
     │   │   │   ├── hyper-util v0.1.17
     │   │   │   │   ├── hyper-rustls v0.27.3 (*)
     │   │   │   │   ├── libdd-common v1.1.0 (*)
     │   │   │   │   └── libdd-telemetry v2.0.0 (*)
     │   │   │   ├── libdd-common v1.1.0 (*)
     │   │   │   └── libdd-telemetry v2.0.0 (*)
     │   │   ├── hyper-util v0.1.17 (*)
     │   │   └── libdd-common v1.1.0 (*)
     │   ├── http-body-util v0.1.2 (*)
     │   ├── hyper v1.6.0 (*)
     │   ├── hyper-rustls v0.27.3 (*)
     │   ├── hyper-util v0.1.17 (*)
     │   ├── libdd-common v1.1.0 (*)
     │   ├── libdd-crashtracker v1.0.0 (*)
     │   ├── libdd-telemetry v2.0.0 (*)
     │   └── multer v3.1.0
     │       └── (dev) libdd-common v1.1.0 (*)
     ├── http-body v1.0.1 (*)
     ├── http-body-util v0.1.2 (*)
     ├── hyper v1.6.0 (*)
     ├── hyper-util v0.1.17 (*)
     ├── (dev) libdd-common v1.1.0 (*)
     ├── multer v3.1.0 (*)
     ├── prost v0.14.3
     │   └── libdd-ddsketch v1.0.0
     │       └── libdd-telemetry v2.0.0 (*)
     ├── tokio v1.49.0
     │   ├── hyper v1.6.0 (*)
     │   ├── hyper-rustls v0.27.3 (*)
     │   ├── hyper-util v0.1.17 (*)
     │   ├── (dev) libdd-common v1.1.0 (*)
     │   ├── libdd-crashtracker v1.0.0 (*)
     │   ├── (dev) libdd-telemetry v2.0.0 (*)
     │   ├── tokio-rustls v0.26.0
     │   │   ├── hyper-rustls v0.27.3 (*)
     │   │   └── libdd-common v1.1.0 (*)
     │   └── tokio-util v0.7.12
     │       └── libdd-telemetry v2.0.0 (*)
     └── tokio-util v0.7.12 (*)

error[vulnerability]: Logging user input may result in poisoning logs with ANSI escape sequences
    ┌─ /home/runner/work/libdatadog/libdatadog/Cargo.lock:219:1
    │
219 │ tracing-subscriber 0.3.19 registry+https://github.com/rust-lang/crates.io-index
    │ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ security vulnerability detected
    │
    ├ ID: RUSTSEC-2025-0055
    ├ Advisory: https://rustsec.org/advisories/RUSTSEC-2025-0055
    ├ Previous versions of tracing-subscriber were vulnerable to ANSI escape sequence injection attacks. Untrusted user input containing ANSI escape sequences could be injected into terminal output when logged, potentially allowing attackers to:
      
      - Manipulate terminal title bars
      - Clear screens or modify terminal display
      - Potentially mislead users through terminal manipulation
      
      In isolation, impact is minimal, however security issues have been found in terminal emulators that enabled an attacker to use ANSI escape sequences via logs to exploit vulnerabilities in the terminal emulator.
      
      This was patched in [PR #3368](https://github.com/tokio-rs/tracing/pull/3368) to escape ANSI control characters from user input.
    ├ Announcement: https://github.com/advisories/GHSA-xwfj-jgwm-7wp5
    ├ Solution: Upgrade to >=0.3.20 (try `cargo update -p tracing-subscriber`)
    ├ tracing-subscriber v0.3.19
      └── (dev) libdd-telemetry v2.0.0
          └── libdd-crashtracker v1.0.0

advisories FAILED, bans ok, sources ok

Updated: 2026-02-18 05:50:23 UTC | Commit: d35b0db | dependency-check job results

@gyuheon0h gyuheon0h force-pushed the gyuheon0h/crash-ping-kind branch from 9d890c4 to b876b7b Compare February 18, 2026 04:37
@gyuheon0h gyuheon0h force-pushed the 02-18-gyuheon0h_report-unhandled-exceptions branch 2 times, most recently from 9becc2b to 82a0aff Compare February 18, 2026 04:42
@datadog-datadog-prod-us1
Copy link
Contributor

datadog-datadog-prod-us1 bot commented Feb 18, 2026

✅ Tests

🎉 All green!

❄️ No new flaky tests detected
🧪 All tests passed

This comment will be updated automatically if new data arrives.
🔗 Commit SHA: 0a838b8 | Docs | Datadog PR Page | Was this helpful? Give us feedback!

@pr-commenter
Copy link

pr-commenter bot commented Feb 18, 2026

Benchmarks

Comparison

Benchmark execution time: 2026-02-18 06:06:02

Comparing candidate commit 0a838b8 in PR branch 02-18-gyuheon0h_report-unhandled-exceptions with baseline commit 99181d9 in branch gyuheon0h/crash-ping-kind.

Found 0 performance improvements and 0 performance regressions! Performance is the same for 57 metrics, 2 unstable metrics.

Candidate

Candidate benchmark details

Group 1

cpu_model git_commit_sha git_commit_date git_branch
Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz 0a838b8 1771393761 02-18-gyuheon0h_report-unhandled-exceptions
scenario metric min mean ± sd median ± mad p75 p95 p99 max peak_to_median_ratio skewness kurtosis cv sem runs sample_size
redis/obfuscate_redis_string execution_time 34.350µs 35.017µs ± 1.080µs 34.531µs ± 0.055µs 34.600µs 37.345µs 37.402µs 38.051µs 10.19% 1.701 0.952 3.08% 0.076µs 1 200
scenario metric 95% CI mean Shapiro-Wilk pvalue Ljung-Box pvalue (lag=1) Dip test pvalue
redis/obfuscate_redis_string execution_time [34.868µs; 35.167µs] or [-0.427%; +0.427%] None None None

Group 2

cpu_model git_commit_sha git_commit_date git_branch
Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz 0a838b8 1771393761 02-18-gyuheon0h_report-unhandled-exceptions
scenario metric min mean ± sd median ± mad p75 p95 p99 max peak_to_median_ratio skewness kurtosis cv sem runs sample_size
tags/replace_trace_tags execution_time 2.393µs 2.438µs ± 0.043µs 2.432µs ± 0.010µs 2.441µs 2.468µs 2.665µs 2.668µs 9.71% 4.495 21.231 1.74% 0.003µs 1 200
scenario metric 95% CI mean Shapiro-Wilk pvalue Ljung-Box pvalue (lag=1) Dip test pvalue
tags/replace_trace_tags execution_time [2.433µs; 2.444µs] or [-0.242%; +0.242%] None None None

Group 3

cpu_model git_commit_sha git_commit_date git_branch
Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz 0a838b8 1771393761 02-18-gyuheon0h_report-unhandled-exceptions
scenario metric min mean ± sd median ± mad p75 p95 p99 max peak_to_median_ratio skewness kurtosis cv sem runs sample_size
benching deserializing traces from msgpack to their internal representation execution_time 48.909ms 49.237ms ± 1.143ms 49.048ms ± 0.073ms 49.203ms 49.403ms 56.820ms 59.363ms 21.03% 7.912 62.563 2.31% 0.081ms 1 200
scenario metric 95% CI mean Shapiro-Wilk pvalue Ljung-Box pvalue (lag=1) Dip test pvalue
benching deserializing traces from msgpack to their internal representation execution_time [49.079ms; 49.395ms] or [-0.322%; +0.322%] None None None

Group 4

cpu_model git_commit_sha git_commit_date git_branch
Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz 0a838b8 1771393761 02-18-gyuheon0h_report-unhandled-exceptions
scenario metric min mean ± sd median ± mad p75 p95 p99 max peak_to_median_ratio skewness kurtosis cv sem runs sample_size
profile_add_sample2_frames_x1000 execution_time 717.970µs 720.618µs ± 1.005µs 720.589µs ± 0.719µs 721.286µs 722.361µs 722.770µs 722.940µs 0.33% 0.107 -0.441 0.14% 0.071µs 1 200
scenario metric 95% CI mean Shapiro-Wilk pvalue Ljung-Box pvalue (lag=1) Dip test pvalue
profile_add_sample2_frames_x1000 execution_time [720.479µs; 720.758µs] or [-0.019%; +0.019%] None None None

Group 5

cpu_model git_commit_sha git_commit_date git_branch
Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz 0a838b8 1771393761 02-18-gyuheon0h_report-unhandled-exceptions
scenario metric min mean ± sd median ± mad p75 p95 p99 max peak_to_median_ratio skewness kurtosis cv sem runs sample_size
credit_card/is_card_number/ execution_time 3.893µs 3.913µs ± 0.003µs 3.913µs ± 0.002µs 3.915µs 3.917µs 3.918µs 3.919µs 0.15% -1.849 13.141 0.07% 0.000µs 1 200
credit_card/is_card_number/ throughput 255168076.996op/s 255547309.342op/s ± 177406.162op/s 255547625.516op/s ± 106425.889op/s 255646022.692op/s 255775634.741op/s 255897459.560op/s 256854606.325op/s 0.51% 1.874 13.352 0.07% 12544.510op/s 1 200
credit_card/is_card_number/ 3782-8224-6310-005 execution_time 79.287µs 81.418µs ± 0.775µs 81.521µs ± 0.533µs 81.973µs 82.558µs 83.306µs 83.731µs 2.71% -0.095 -0.042 0.95% 0.055µs 1 200
credit_card/is_card_number/ 3782-8224-6310-005 throughput 11942957.693op/s 12283416.959op/s ± 117062.731op/s 12266829.109op/s ± 80171.365op/s 12373151.765op/s 12491430.050op/s 12546104.059op/s 12612368.971op/s 2.82% 0.150 -0.060 0.95% 8277.585op/s 1 200
credit_card/is_card_number/ 378282246310005 execution_time 71.848µs 72.290µs ± 0.372µs 72.184µs ± 0.233µs 72.471µs 73.139µs 73.279µs 73.414µs 1.70% 1.081 0.516 0.51% 0.026µs 1 200
credit_card/is_card_number/ 378282246310005 throughput 13621401.476op/s 13833463.467op/s ± 70709.733op/s 13853517.984op/s ± 44795.008op/s 13894114.455op/s 13910706.520op/s 13915672.835op/s 13918218.949op/s 0.47% -1.060 0.462 0.51% 4999.933op/s 1 200
credit_card/is_card_number/37828224631 execution_time 3.892µs 3.912µs ± 0.003µs 3.912µs ± 0.002µs 3.914µs 3.917µs 3.919µs 3.922µs 0.24% -1.199 10.105 0.07% 0.000µs 1 200
credit_card/is_card_number/37828224631 throughput 254986426.163op/s 255594207.467op/s ± 190974.657op/s 255600370.621op/s ± 110368.454op/s 255709539.574op/s 255838158.478op/s 255914501.794op/s 256906678.749op/s 0.51% 1.223 10.274 0.07% 13503.948op/s 1 200
credit_card/is_card_number/378282246310005 execution_time 68.557µs 69.233µs ± 0.374µs 69.179µs ± 0.248µs 69.479µs 69.893µs 70.222µs 70.990µs 2.62% 1.021 1.804 0.54% 0.026µs 1 200
credit_card/is_card_number/378282246310005 throughput 14086534.846op/s 14444346.881op/s ± 77628.603op/s 14455317.272op/s ± 51921.860op/s 14502502.775op/s 14545408.294op/s 14559661.138op/s 14586337.993op/s 0.91% -0.978 1.613 0.54% 5489.171op/s 1 200
credit_card/is_card_number/37828224631000521389798 execution_time 45.499µs 45.739µs ± 0.094µs 45.737µs ± 0.064µs 45.808µs 45.889µs 45.928µs 45.971µs 0.51% -0.225 -0.209 0.21% 0.007µs 1 200
credit_card/is_card_number/37828224631000521389798 throughput 21752928.451op/s 21863503.257op/s ± 45154.306op/s 21864263.958op/s ± 30633.436op/s 21890274.169op/s 21947159.734op/s 21970202.134op/s 21978710.157op/s 0.52% 0.236 -0.203 0.21% 3192.892op/s 1 200
credit_card/is_card_number/x371413321323331 execution_time 6.428µs 6.438µs ± 0.006µs 6.438µs ± 0.004µs 6.441µs 6.446µs 6.449µs 6.477µs 0.61% 2.636 14.693 0.09% 0.000µs 1 200
credit_card/is_card_number/x371413321323331 throughput 154394965.969op/s 155329448.701op/s ± 146132.173op/s 155337965.805op/s ± 88441.141op/s 155427728.309op/s 155500417.505op/s 155540246.441op/s 155577015.528op/s 0.15% -2.609 14.471 0.09% 10333.105op/s 1 200
credit_card/is_card_number_no_luhn/ execution_time 3.894µs 3.912µs ± 0.003µs 3.912µs ± 0.002µs 3.914µs 3.919µs 3.921µs 3.921µs 0.23% -0.314 5.500 0.08% 0.000µs 1 200
credit_card/is_card_number_no_luhn/ throughput 255029473.565op/s 255593314.120op/s ± 202954.913op/s 255627671.696op/s ± 108443.854op/s 255709456.433op/s 255836200.787op/s 255892707.815op/s 256791280.429op/s 0.46% 0.331 5.590 0.08% 14351.080op/s 1 200
credit_card/is_card_number_no_luhn/ 3782-8224-6310-005 execution_time 61.814µs 63.308µs ± 0.584µs 63.316µs ± 0.392µs 63.668µs 64.253µs 64.549µs 64.718µs 2.21% 0.032 -0.297 0.92% 0.041µs 1 200
credit_card/is_card_number_no_luhn/ 3782-8224-6310-005 throughput 15451686.318op/s 15797045.770op/s ± 145834.060op/s 15793780.212op/s ± 97170.600op/s 15907242.569op/s 16029977.840op/s 16143248.188op/s 16177556.723op/s 2.43% 0.015 -0.293 0.92% 10312.025op/s 1 200
credit_card/is_card_number_no_luhn/ 378282246310005 execution_time 53.847µs 54.011µs ± 0.066µs 54.010µs ± 0.044µs 54.056µs 54.116µs 54.154µs 54.192µs 0.34% -0.024 -0.106 0.12% 0.005µs 1 200
credit_card/is_card_number_no_luhn/ 378282246310005 throughput 18453030.836op/s 18514748.308op/s ± 22561.088op/s 18515012.390op/s ± 15240.134op/s 18528798.923op/s 18550184.270op/s 18567976.238op/s 18571214.617op/s 0.30% 0.031 -0.106 0.12% 1595.310op/s 1 200
credit_card/is_card_number_no_luhn/37828224631 execution_time 3.899µs 3.912µs ± 0.003µs 3.912µs ± 0.002µs 3.914µs 3.918µs 3.923µs 3.923µs 0.28% 0.653 4.612 0.07% 0.000µs 1 200
credit_card/is_card_number_no_luhn/37828224631 throughput 254893531.820op/s 255600516.201op/s ± 186729.497op/s 255619220.844op/s ± 104955.307op/s 255721889.885op/s 255821759.819op/s 255853220.569op/s 256504729.024op/s 0.35% -0.640 4.625 0.07% 13203.769op/s 1 200
credit_card/is_card_number_no_luhn/378282246310005 execution_time 50.173µs 50.360µs ± 0.109µs 50.343µs ± 0.050µs 50.398µs 50.526µs 50.785µs 50.869µs 1.05% 1.830 5.257 0.22% 0.008µs 1 200
credit_card/is_card_number_no_luhn/378282246310005 throughput 19658198.264op/s 19857075.301op/s ± 42671.197op/s 19863835.903op/s ± 19802.048op/s 19881877.674op/s 19911189.396op/s 19927405.483op/s 19930946.781op/s 0.34% -1.805 5.146 0.21% 3017.309op/s 1 200
credit_card/is_card_number_no_luhn/37828224631000521389798 execution_time 45.508µs 45.721µs ± 0.085µs 45.718µs ± 0.054µs 45.775µs 45.864µs 45.913µs 45.930µs 0.46% 0.004 -0.248 0.18% 0.006µs 1 200
credit_card/is_card_number_no_luhn/37828224631000521389798 throughput 21772396.340op/s 21872030.595op/s ± 40435.498op/s 21873290.525op/s ± 25982.947op/s 21898301.787op/s 21941274.939op/s 21959009.940op/s 21974279.658op/s 0.46% 0.006 -0.248 0.18% 2859.221op/s 1 200
credit_card/is_card_number_no_luhn/x371413321323331 execution_time 6.428µs 6.435µs ± 0.005µs 6.435µs ± 0.003µs 6.438µs 6.442µs 6.448µs 6.465µs 0.47% 1.745 8.185 0.07% 0.000µs 1 200
credit_card/is_card_number_no_luhn/x371413321323331 throughput 154669071.348op/s 155389324.419op/s ± 111302.980op/s 155393757.288op/s ± 64284.587op/s 155460765.592op/s 155533740.712op/s 155569777.561op/s 155578333.691op/s 0.12% -1.729 8.070 0.07% 7870.309op/s 1 200
scenario metric 95% CI mean Shapiro-Wilk pvalue Ljung-Box pvalue (lag=1) Dip test pvalue
credit_card/is_card_number/ execution_time [3.913µs; 3.914µs] or [-0.010%; +0.010%] None None None
credit_card/is_card_number/ throughput [255522722.555op/s; 255571896.130op/s] or [-0.010%; +0.010%] None None None
credit_card/is_card_number/ 3782-8224-6310-005 execution_time [81.311µs; 81.525µs] or [-0.132%; +0.132%] None None None
credit_card/is_card_number/ 3782-8224-6310-005 throughput [12267193.190op/s; 12299640.728op/s] or [-0.132%; +0.132%] None None None
credit_card/is_card_number/ 378282246310005 execution_time [72.239µs; 72.342µs] or [-0.071%; +0.071%] None None None
credit_card/is_card_number/ 378282246310005 throughput [13823663.778op/s; 13843263.156op/s] or [-0.071%; +0.071%] None None None
credit_card/is_card_number/37828224631 execution_time [3.912µs; 3.913µs] or [-0.010%; +0.010%] None None None
credit_card/is_card_number/37828224631 throughput [255567740.216op/s; 255620674.718op/s] or [-0.010%; +0.010%] None None None
credit_card/is_card_number/378282246310005 execution_time [69.181µs; 69.285µs] or [-0.075%; +0.075%] None None None
credit_card/is_card_number/378282246310005 throughput [14433588.304op/s; 14455105.459op/s] or [-0.074%; +0.074%] None None None
credit_card/is_card_number/37828224631000521389798 execution_time [45.725µs; 45.752µs] or [-0.029%; +0.029%] None None None
credit_card/is_card_number/37828224631000521389798 throughput [21857245.304op/s; 21869761.209op/s] or [-0.029%; +0.029%] None None None
credit_card/is_card_number/x371413321323331 execution_time [6.437µs; 6.439µs] or [-0.013%; +0.013%] None None None
credit_card/is_card_number/x371413321323331 throughput [155309196.187op/s; 155349701.215op/s] or [-0.013%; +0.013%] None None None
credit_card/is_card_number_no_luhn/ execution_time [3.912µs; 3.913µs] or [-0.011%; +0.011%] None None None
credit_card/is_card_number_no_luhn/ throughput [255565186.521op/s; 255621441.719op/s] or [-0.011%; +0.011%] None None None
credit_card/is_card_number_no_luhn/ 3782-8224-6310-005 execution_time [63.227µs; 63.389µs] or [-0.128%; +0.128%] None None None
credit_card/is_card_number_no_luhn/ 3782-8224-6310-005 throughput [15776834.572op/s; 15817256.969op/s] or [-0.128%; +0.128%] None None None
credit_card/is_card_number_no_luhn/ 378282246310005 execution_time [54.002µs; 54.020µs] or [-0.017%; +0.017%] None None None
credit_card/is_card_number_no_luhn/ 378282246310005 throughput [18511621.558op/s; 18517875.058op/s] or [-0.017%; +0.017%] None None None
credit_card/is_card_number_no_luhn/37828224631 execution_time [3.912µs; 3.913µs] or [-0.010%; +0.010%] None None None
credit_card/is_card_number_no_luhn/37828224631 throughput [255574637.289op/s; 255626395.114op/s] or [-0.010%; +0.010%] None None None
credit_card/is_card_number_no_luhn/378282246310005 execution_time [50.345µs; 50.375µs] or [-0.030%; +0.030%] None None None
credit_card/is_card_number_no_luhn/378282246310005 throughput [19851161.484op/s; 19862989.119op/s] or [-0.030%; +0.030%] None None None
credit_card/is_card_number_no_luhn/37828224631000521389798 execution_time [45.709µs; 45.732µs] or [-0.026%; +0.026%] None None None
credit_card/is_card_number_no_luhn/37828224631000521389798 throughput [21866426.624op/s; 21877634.566op/s] or [-0.026%; +0.026%] None None None
credit_card/is_card_number_no_luhn/x371413321323331 execution_time [6.435µs; 6.436µs] or [-0.010%; +0.010%] None None None
credit_card/is_card_number_no_luhn/x371413321323331 throughput [155373898.897op/s; 155404749.942op/s] or [-0.010%; +0.010%] None None None

Group 6

cpu_model git_commit_sha git_commit_date git_branch
Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz 0a838b8 1771393761 02-18-gyuheon0h_report-unhandled-exceptions
scenario metric min mean ± sd median ± mad p75 p95 p99 max peak_to_median_ratio skewness kurtosis cv sem runs sample_size
profile_add_sample_frames_x1000 execution_time 4.193ms 4.197ms ± 0.008ms 4.196ms ± 0.001ms 4.198ms 4.202ms 4.229ms 4.287ms 2.17% 8.630 90.680 0.18% 0.001ms 1 200
scenario metric 95% CI mean Shapiro-Wilk pvalue Ljung-Box pvalue (lag=1) Dip test pvalue
profile_add_sample_frames_x1000 execution_time [4.196ms; 4.198ms] or [-0.026%; +0.026%] None None None

Group 7

cpu_model git_commit_sha git_commit_date git_branch
Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz 0a838b8 1771393761 02-18-gyuheon0h_report-unhandled-exceptions
scenario metric min mean ± sd median ± mad p75 p95 p99 max peak_to_median_ratio skewness kurtosis cv sem runs sample_size
normalization/normalize_trace/test_trace execution_time 242.496ns 251.235ns ± 12.345ns 245.332ns ± 1.989ns 252.335ns 284.071ns 286.969ns 292.891ns 19.39% 1.815 2.128 4.90% 0.873ns 1 200
scenario metric 95% CI mean Shapiro-Wilk pvalue Ljung-Box pvalue (lag=1) Dip test pvalue
normalization/normalize_trace/test_trace execution_time [249.524ns; 252.946ns] or [-0.681%; +0.681%] None None None

Group 8

cpu_model git_commit_sha git_commit_date git_branch
Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz 0a838b8 1771393761 02-18-gyuheon0h_report-unhandled-exceptions
scenario metric min mean ± sd median ± mad p75 p95 p99 max peak_to_median_ratio skewness kurtosis cv sem runs sample_size
sql/obfuscate_sql_string execution_time 90.353µs 90.603µs ± 0.233µs 90.575µs ± 0.063µs 90.638µs 90.833µs 91.088µs 93.435µs 3.16% 9.195 108.003 0.26% 0.016µs 1 200
scenario metric 95% CI mean Shapiro-Wilk pvalue Ljung-Box pvalue (lag=1) Dip test pvalue
sql/obfuscate_sql_string execution_time [90.571µs; 90.636µs] or [-0.036%; +0.036%] None None None

Group 9

cpu_model git_commit_sha git_commit_date git_branch
Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz 0a838b8 1771393761 02-18-gyuheon0h_report-unhandled-exceptions
scenario metric min mean ± sd median ± mad p75 p95 p99 max peak_to_median_ratio skewness kurtosis cv sem runs sample_size
single_flag_killswitch/rules-based execution_time 188.186ns 190.559ns ± 1.903ns 190.456ns ± 1.504ns 191.636ns 193.794ns 196.253ns 197.499ns 3.70% 0.827 0.571 1.00% 0.135ns 1 200
scenario metric 95% CI mean Shapiro-Wilk pvalue Ljung-Box pvalue (lag=1) Dip test pvalue
single_flag_killswitch/rules-based execution_time [190.295ns; 190.822ns] or [-0.138%; +0.138%] None None None

Group 10

cpu_model git_commit_sha git_commit_date git_branch
Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz 0a838b8 1771393761 02-18-gyuheon0h_report-unhandled-exceptions
scenario metric min mean ± sd median ± mad p75 p95 p99 max peak_to_median_ratio skewness kurtosis cv sem runs sample_size
write only interface execution_time 1.188µs 3.160µs ± 1.437µs 2.985µs ± 0.022µs 3.007µs 3.394µs 13.815µs 15.224µs 410.09% 7.526 57.207 45.36% 0.102µs 1 200
scenario metric 95% CI mean Shapiro-Wilk pvalue Ljung-Box pvalue (lag=1) Dip test pvalue
write only interface execution_time [2.961µs; 3.359µs] or [-6.303%; +6.303%] None None None

Group 11

cpu_model git_commit_sha git_commit_date git_branch
Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz 0a838b8 1771393761 02-18-gyuheon0h_report-unhandled-exceptions
scenario metric min mean ± sd median ± mad p75 p95 p99 max peak_to_median_ratio skewness kurtosis cv sem runs sample_size
normalization/normalize_service/normalize_service/A0000000000000000000000000000000000000000000000000... execution_time 493.246µs 494.117µs ± 0.653µs 494.072µs ± 0.337µs 494.412µs 494.841µs 495.042µs 501.074µs 1.42% 6.086 62.510 0.13% 0.046µs 1 200
normalization/normalize_service/normalize_service/A0000000000000000000000000000000000000000000000000... throughput 1995712.323op/s 2023816.412op/s ± 2653.553op/s 2023996.049op/s ± 1380.965op/s 2025309.961op/s 2026644.646op/s 2027066.721op/s 2027387.299op/s 0.17% -5.979 60.995 0.13% 187.634op/s 1 200
normalization/normalize_service/normalize_service/Data🐨dog🐶 繋がっ⛰てて execution_time 371.727µs 372.387µs ± 0.294µs 372.361µs ± 0.217µs 372.596µs 372.900µs 373.036µs 373.144µs 0.21% 0.180 -0.531 0.08% 0.021µs 1 200
normalization/normalize_service/normalize_service/Data🐨dog🐶 繋がっ⛰てて throughput 2679929.912op/s 2685377.104op/s ± 2122.557op/s 2685566.203op/s ± 1565.403op/s 2686914.946op/s 2688739.032op/s 2689435.974op/s 2690143.117op/s 0.17% -0.176 -0.533 0.08% 150.087op/s 1 200
normalization/normalize_service/normalize_service/Test Conversion 0f Weird !@#$%^&**() Characters execution_time 167.653µs 167.962µs ± 0.130µs 167.956µs ± 0.082µs 168.033µs 168.179µs 168.275µs 168.439µs 0.29% 0.511 0.415 0.08% 0.009µs 1 200
normalization/normalize_service/normalize_service/Test Conversion 0f Weird !@#$%^&**() Characters throughput 5936873.910op/s 5953718.794op/s ± 4613.717op/s 5953956.806op/s ± 2901.105op/s 5957035.300op/s 5960496.684op/s 5962168.079op/s 5964714.138op/s 0.18% -0.506 0.406 0.08% 326.239op/s 1 200
normalization/normalize_service/normalize_service/[empty string] execution_time 38.767µs 38.883µs ± 0.044µs 38.883µs ± 0.029µs 38.912µs 38.959µs 38.989µs 39.004µs 0.31% 0.130 -0.056 0.11% 0.003µs 1 200
normalization/normalize_service/normalize_service/[empty string] throughput 25638238.619op/s 25717944.136op/s ± 28973.187op/s 25717984.133op/s ± 19383.023op/s 25737483.907op/s 25768142.941op/s 25778454.456op/s 25794987.617op/s 0.30% -0.124 -0.058 0.11% 2048.714op/s 1 200
normalization/normalize_service/normalize_service/test_ASCII execution_time 45.626µs 45.742µs ± 0.156µs 45.732µs ± 0.035µs 45.763µs 45.832µs 45.923µs 47.804µs 4.53% 11.548 149.530 0.34% 0.011µs 1 200
normalization/normalize_service/normalize_service/test_ASCII throughput 20918605.705op/s 21861858.347op/s ± 71954.451op/s 21866573.002op/s ± 16601.316op/s 21884340.561op/s 21905141.762op/s 21911412.843op/s 21917539.617op/s 0.23% -11.361 146.214 0.33% 5087.948op/s 1 200
scenario metric 95% CI mean Shapiro-Wilk pvalue Ljung-Box pvalue (lag=1) Dip test pvalue
normalization/normalize_service/normalize_service/A0000000000000000000000000000000000000000000000000... execution_time [494.026µs; 494.207µs] or [-0.018%; +0.018%] None None None
normalization/normalize_service/normalize_service/A0000000000000000000000000000000000000000000000000... throughput [2023448.655op/s; 2024184.169op/s] or [-0.018%; +0.018%] None None None
normalization/normalize_service/normalize_service/Data🐨dog🐶 繋がっ⛰てて execution_time [372.347µs; 372.428µs] or [-0.011%; +0.011%] None None None
normalization/normalize_service/normalize_service/Data🐨dog🐶 繋がっ⛰てて throughput [2685082.938op/s; 2685671.270op/s] or [-0.011%; +0.011%] None None None
normalization/normalize_service/normalize_service/Test Conversion 0f Weird !@#$%^&**() Characters execution_time [167.944µs; 167.980µs] or [-0.011%; +0.011%] None None None
normalization/normalize_service/normalize_service/Test Conversion 0f Weird !@#$%^&**() Characters throughput [5953079.377op/s; 5954358.211op/s] or [-0.011%; +0.011%] None None None
normalization/normalize_service/normalize_service/[empty string] execution_time [38.877µs; 38.889µs] or [-0.016%; +0.016%] None None None
normalization/normalize_service/normalize_service/[empty string] throughput [25713928.731op/s; 25721959.541op/s] or [-0.016%; +0.016%] None None None
normalization/normalize_service/normalize_service/test_ASCII execution_time [45.721µs; 45.764µs] or [-0.047%; +0.047%] None None None
normalization/normalize_service/normalize_service/test_ASCII throughput [21851886.152op/s; 21871830.542op/s] or [-0.046%; +0.046%] None None None

Group 12

cpu_model git_commit_sha git_commit_date git_branch
Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz 0a838b8 1771393761 02-18-gyuheon0h_report-unhandled-exceptions
scenario metric min mean ± sd median ± mad p75 p95 p99 max peak_to_median_ratio skewness kurtosis cv sem runs sample_size
normalization/normalize_name/normalize_name/Too-Long-.Too-Long-.Too-Long-.Too-Long-.Too-Long-.Too-Lo... execution_time 185.396µs 186.067µs ± 0.363µs 185.995µs ± 0.189µs 186.221µs 186.632µs 187.190µs 188.546µs 1.37% 2.211 10.561 0.19% 0.026µs 1 200
normalization/normalize_name/normalize_name/Too-Long-.Too-Long-.Too-Long-.Too-Long-.Too-Long-.Too-Lo... throughput 5303739.176op/s 5374442.813op/s ± 10440.794op/s 5376492.590op/s ± 5468.804op/s 5380898.689op/s 5386508.261op/s 5389660.665op/s 5393858.176op/s 0.32% -2.167 10.189 0.19% 738.276op/s 1 200
normalization/normalize_name/normalize_name/bad-name execution_time 17.514µs 17.683µs ± 0.067µs 17.683µs ± 0.045µs 17.730µs 17.788µs 17.827µs 17.904µs 1.25% 0.114 0.064 0.38% 0.005µs 1 200
normalization/normalize_name/normalize_name/bad-name throughput 55852418.199op/s 56551926.614op/s ± 215592.548op/s 56550589.892op/s ± 142633.835op/s 56690010.804op/s 56935550.277op/s 57005335.722op/s 57096467.120op/s 0.97% -0.091 0.044 0.38% 15244.695op/s 1 200
normalization/normalize_name/normalize_name/good execution_time 9.836µs 9.907µs ± 0.070µs 9.888µs ± 0.017µs 9.901µs 10.095µs 10.136µs 10.190µs 3.05% 2.090 3.579 0.71% 0.005µs 1 200
normalization/normalize_name/normalize_name/good throughput 98138757.873op/s 100939396.894op/s ± 705017.352op/s 101134724.007op/s ± 173837.782op/s 101340436.824op/s 101512009.983op/s 101579998.231op/s 101670453.190op/s 0.53% -2.064 3.466 0.70% 49852.255op/s 1 200
scenario metric 95% CI mean Shapiro-Wilk pvalue Ljung-Box pvalue (lag=1) Dip test pvalue
normalization/normalize_name/normalize_name/Too-Long-.Too-Long-.Too-Long-.Too-Long-.Too-Long-.Too-Lo... execution_time [186.016µs; 186.117µs] or [-0.027%; +0.027%] None None None
normalization/normalize_name/normalize_name/Too-Long-.Too-Long-.Too-Long-.Too-Long-.Too-Long-.Too-Lo... throughput [5372995.819op/s; 5375889.807op/s] or [-0.027%; +0.027%] None None None
normalization/normalize_name/normalize_name/bad-name execution_time [17.674µs; 17.692µs] or [-0.053%; +0.053%] None None None
normalization/normalize_name/normalize_name/bad-name throughput [56522047.560op/s; 56581805.668op/s] or [-0.053%; +0.053%] None None None
normalization/normalize_name/normalize_name/good execution_time [9.898µs; 9.917µs] or [-0.098%; +0.098%] None None None
normalization/normalize_name/normalize_name/good throughput [100841688.270op/s; 101037105.519op/s] or [-0.097%; +0.097%] None None None

Group 13

cpu_model git_commit_sha git_commit_date git_branch
Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz 0a838b8 1771393761 02-18-gyuheon0h_report-unhandled-exceptions
scenario metric min mean ± sd median ± mad p75 p95 p99 max peak_to_median_ratio skewness kurtosis cv sem runs sample_size
two way interface execution_time 17.570µs 24.620µs ± 8.955µs 17.800µs ± 0.123µs 32.305µs 40.864µs 41.474µs 66.909µs 275.90% 1.058 1.038 36.28% 0.633µs 1 200
scenario metric 95% CI mean Shapiro-Wilk pvalue Ljung-Box pvalue (lag=1) Dip test pvalue
two way interface execution_time [23.379µs; 25.861µs] or [-5.041%; +5.041%] None None None

Group 14

cpu_model git_commit_sha git_commit_date git_branch
Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz 0a838b8 1771393761 02-18-gyuheon0h_report-unhandled-exceptions
scenario metric min mean ± sd median ± mad p75 p95 p99 max peak_to_median_ratio skewness kurtosis cv sem runs sample_size
sdk_test_data/rules-based execution_time 145.281µs 147.664µs ± 1.752µs 147.365µs ± 0.560µs 147.966µs 149.749µs 154.092µs 163.212µs 10.75% 5.192 37.721 1.18% 0.124µs 1 200
scenario metric 95% CI mean Shapiro-Wilk pvalue Ljung-Box pvalue (lag=1) Dip test pvalue
sdk_test_data/rules-based execution_time [147.421µs; 147.907µs] or [-0.164%; +0.164%] None None None

Group 15

cpu_model git_commit_sha git_commit_date git_branch
Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz 0a838b8 1771393761 02-18-gyuheon0h_report-unhandled-exceptions
scenario metric min mean ± sd median ± mad p75 p95 p99 max peak_to_median_ratio skewness kurtosis cv sem runs sample_size
ip_address/quantize_peer_ip_address_benchmark execution_time 4.945µs 5.081µs ± 0.047µs 5.091µs ± 0.019µs 5.106µs 5.153µs 5.155µs 5.160µs 1.35% -0.643 0.227 0.92% 0.003µs 1 200
scenario metric 95% CI mean Shapiro-Wilk pvalue Ljung-Box pvalue (lag=1) Dip test pvalue
ip_address/quantize_peer_ip_address_benchmark execution_time [5.074µs; 5.087µs] or [-0.128%; +0.128%] None None None

Group 16

cpu_model git_commit_sha git_commit_date git_branch
Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz 0a838b8 1771393761 02-18-gyuheon0h_report-unhandled-exceptions
scenario metric min mean ± sd median ± mad p75 p95 p99 max peak_to_median_ratio skewness kurtosis cv sem runs sample_size
receiver_entry_point/report/2597 execution_time 3.362ms 3.389ms ± 0.010ms 3.389ms ± 0.006ms 3.395ms 3.407ms 3.413ms 3.416ms 0.81% 0.150 -0.075 0.30% 0.001ms 1 200
scenario metric 95% CI mean Shapiro-Wilk pvalue Ljung-Box pvalue (lag=1) Dip test pvalue
receiver_entry_point/report/2597 execution_time [3.388ms; 3.390ms] or [-0.042%; +0.042%] None None None

Group 17

cpu_model git_commit_sha git_commit_date git_branch
Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz 0a838b8 1771393761 02-18-gyuheon0h_report-unhandled-exceptions
scenario metric min mean ± sd median ± mad p75 p95 p99 max peak_to_median_ratio skewness kurtosis cv sem runs sample_size
benching string interning on wordpress profile execution_time 161.101µs 161.777µs ± 1.054µs 161.675µs ± 0.125µs 161.813µs 162.084µs 162.525µs 176.257µs 9.02% 13.055 176.766 0.65% 0.075µs 1 200
scenario metric 95% CI mean Shapiro-Wilk pvalue Ljung-Box pvalue (lag=1) Dip test pvalue
benching string interning on wordpress profile execution_time [161.631µs; 161.923µs] or [-0.090%; +0.090%] None None None

Group 18

cpu_model git_commit_sha git_commit_date git_branch
Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz 0a838b8 1771393761 02-18-gyuheon0h_report-unhandled-exceptions
scenario metric min mean ± sd median ± mad p75 p95 p99 max peak_to_median_ratio skewness kurtosis cv sem runs sample_size
concentrator/add_spans_to_concentrator execution_time 10.621ms 10.649ms ± 0.011ms 10.648ms ± 0.007ms 10.656ms 10.667ms 10.681ms 10.704ms 0.53% 0.970 2.651 0.11% 0.001ms 1 200
scenario metric 95% CI mean Shapiro-Wilk pvalue Ljung-Box pvalue (lag=1) Dip test pvalue
concentrator/add_spans_to_concentrator execution_time [10.648ms; 10.651ms] or [-0.015%; +0.015%] None None None

Group 19

cpu_model git_commit_sha git_commit_date git_branch
Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz 0a838b8 1771393761 02-18-gyuheon0h_report-unhandled-exceptions
scenario metric min mean ± sd median ± mad p75 p95 p99 max peak_to_median_ratio skewness kurtosis cv sem runs sample_size
benching serializing traces from their internal representation to msgpack execution_time 14.833ms 14.878ms ± 0.032ms 14.872ms ± 0.011ms 14.883ms 14.909ms 15.007ms 15.086ms 1.44% 3.649 16.736 0.21% 0.002ms 1 200
scenario metric 95% CI mean Shapiro-Wilk pvalue Ljung-Box pvalue (lag=1) Dip test pvalue
benching serializing traces from their internal representation to msgpack execution_time [14.874ms; 14.882ms] or [-0.030%; +0.030%] None None None

Baseline

Omitted due to size.

@gyuheon0h gyuheon0h force-pushed the gyuheon0h/crash-ping-kind branch from b876b7b to f198560 Compare February 18, 2026 05:04
@gyuheon0h gyuheon0h force-pushed the 02-18-gyuheon0h_report-unhandled-exceptions branch from 82a0aff to cb83452 Compare February 18, 2026 05:04
@gyuheon0h gyuheon0h force-pushed the gyuheon0h/crash-ping-kind branch from f198560 to 285bf36 Compare February 18, 2026 05:12
@gyuheon0h gyuheon0h force-pushed the 02-18-gyuheon0h_report-unhandled-exceptions branch 2 times, most recently from cc12c2c to 50c6547 Compare February 18, 2026 05:15
@gyuheon0h gyuheon0h force-pushed the gyuheon0h/crash-ping-kind branch from 285bf36 to 99181d9 Compare February 18, 2026 05:15
exception_message: Option<&str>,
stacktrace: StackTrace,
) -> Result<(), CrashHandlerError> {
let Some((config, config_str)) = get_config() else {
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This is an explicit contract with the caller. Error if not upheld

@gyuheon0h gyuheon0h force-pushed the 02-18-gyuheon0h_report-unhandled-exceptions branch from 50c6547 to d4fe74f Compare February 18, 2026 05:19
@gyuheon0h gyuheon0h marked this pull request as ready for review February 18, 2026 05:20
@gyuheon0h gyuheon0h requested a review from a team as a code owner February 18, 2026 05:20
@gyuheon0h gyuheon0h force-pushed the 02-18-gyuheon0h_report-unhandled-exceptions branch from d4fe74f to cefddfb Compare February 18, 2026 05:26
@codecov-commenter
Copy link

codecov-commenter commented Feb 18, 2026

Codecov Report

❌ Patch coverage is 24.82759% with 109 lines in your changes missing coverage. Please review.
✅ Project coverage is 70.89%. Comparing base (99181d9) to head (0a838b8).

Additional details and impacted files
@@                      Coverage Diff                      @@
##           gyuheon0h/crash-ping-kind    #1596      +/-   ##
=============================================================
- Coverage                      70.96%   70.89%   -0.08%     
=============================================================
  Files                            424      424              
  Lines                          62117    62254     +137     
=============================================================
+ Hits                           44084    44136      +52     
- Misses                         18033    18118      +85     
Components Coverage Δ
libdd-crashtracker 62.19% <28.09%> (-0.36%) ⬇️
libdd-crashtracker-ffi 15.80% <ø> (ø)
libdd-alloc 98.77% <ø> (ø)
libdd-data-pipeline 85.96% <ø> (ø)
libdd-data-pipeline-ffi 75.63% <ø> (ø)
libdd-common 80.58% <ø> (ø)
libdd-common-ffi 73.75% <ø> (ø)
libdd-telemetry 62.52% <ø> (ø)
libdd-telemetry-ffi 16.75% <ø> (ø)
libdd-dogstatsd-client 82.64% <ø> (ø)
datadog-ipc 80.71% <ø> (ø)
libdd-profiling 81.37% <ø> (+0.01%) ⬆️
libdd-profiling-ffi 63.66% <ø> (ø)
datadog-sidecar 32.76% <ø> (ø)
datdog-sidecar-ffi 9.50% <ø> (ø)
spawn-worker 54.69% <ø> (ø)
libdd-tinybytes 93.16% <ø> (ø)
libdd-trace-normalization 81.71% <ø> (ø)
libdd-trace-obfuscation 94.18% <ø> (ø)
libdd-trace-protobuf 68.00% <ø> (ø)
libdd-trace-utils 89.09% <ø> (ø)
datadog-tracer-flare 88.95% <ø> (ø)
libdd-log 74.69% <ø> (ø)
🚀 New features to boost your workflow:
  • ❄️ Test Analytics: Detect flaky tests, report on failures, and find test suite problems.
  • 📦 JS Bundle Analysis: Save yourself from yourself by tracking and limiting bundle sizes in JS merges.

@gyuheon0h gyuheon0h force-pushed the 02-18-gyuheon0h_report-unhandled-exceptions branch from cefddfb to aae6c75 Compare February 18, 2026 05:45
@gyuheon0h gyuheon0h marked this pull request as draft February 18, 2026 05:47
@gyuheon0h gyuheon0h force-pushed the 02-18-gyuheon0h_report-unhandled-exceptions branch from aae6c75 to 0a838b8 Compare February 18, 2026 05:49
@gyuheon0h gyuheon0h marked this pull request as ready for review February 18, 2026 05:50
@dd-octo-sts
Copy link

dd-octo-sts bot commented Feb 18, 2026

Artifact Size Benchmark Report

aarch64-alpine-linux-musl
Artifact Baseline Commit Change
/aarch64-alpine-linux-musl/lib/libdatadog_profiling.a 91.61 MB 91.66 MB +.05% (+51.14 KB) 🔍
/aarch64-alpine-linux-musl/lib/libdatadog_profiling.so 8.38 MB 8.44 MB +.74% (+64.00 KB) 🔍
aarch64-unknown-linux-gnu
Artifact Baseline Commit Change
/aarch64-unknown-linux-gnu/lib/libdatadog_profiling.a 106.31 MB 106.36 MB +.04% (+53.53 KB) 🔍
/aarch64-unknown-linux-gnu/lib/libdatadog_profiling.so 10.76 MB 10.76 MB +.01% (+1.97 KB) 🔍
libdatadog-x64-windows
Artifact Baseline Commit Change
/libdatadog-x64-windows/debug/dynamic/datadog_profiling_ffi.dll 25.01 MB 25.01 MB +0% (+512 B) 👌
/libdatadog-x64-windows/debug/dynamic/datadog_profiling_ffi.lib 75.94 KB 75.94 KB 0% (0 B) 👌
/libdatadog-x64-windows/debug/dynamic/datadog_profiling_ffi.pdb 166.58 MB 166.58 MB 0% (0 B) 👌
/libdatadog-x64-windows/debug/static/datadog_profiling_ffi.lib 838.66 MB 838.67 MB +0% (+12.52 KB) 👌
/libdatadog-x64-windows/release/dynamic/datadog_profiling_ffi.dll 9.57 MB 9.57 MB -0% (-512 B) 👌
/libdatadog-x64-windows/release/dynamic/datadog_profiling_ffi.lib 75.94 KB 75.94 KB 0% (0 B) 👌
/libdatadog-x64-windows/release/dynamic/datadog_profiling_ffi.pdb 23.02 MB 23.01 MB --.03% (-8.00 KB) 💪
/libdatadog-x64-windows/release/static/datadog_profiling_ffi.lib 48.42 MB 48.42 MB -0% (-850 B) 👌
libdatadog-x86-windows
Artifact Baseline Commit Change
/libdatadog-x86-windows/debug/dynamic/datadog_profiling_ffi.dll 21.09 MB 21.09 MB +0% (+1.50 KB) 👌
/libdatadog-x86-windows/debug/dynamic/datadog_profiling_ffi.lib 77.12 KB 77.12 KB 0% (0 B) 👌
/libdatadog-x86-windows/debug/dynamic/datadog_profiling_ffi.pdb 170.37 MB 170.37 MB +0% (+8.00 KB) 👌
/libdatadog-x86-windows/debug/static/datadog_profiling_ffi.lib 824.63 MB 824.64 MB +0% (+11.71 KB) 👌
/libdatadog-x86-windows/release/dynamic/datadog_profiling_ffi.dll 7.24 MB 7.24 MB +0% (+512 B) 👌
/libdatadog-x86-windows/release/dynamic/datadog_profiling_ffi.lib 77.12 KB 77.12 KB 0% (0 B) 👌
/libdatadog-x86-windows/release/dynamic/datadog_profiling_ffi.pdb 24.62 MB 24.62 MB 0% (0 B) 👌
/libdatadog-x86-windows/release/static/datadog_profiling_ffi.lib 44.15 MB 44.15 MB +0% (+1.28 KB) 👌
x86_64-alpine-linux-musl
Artifact Baseline Commit Change
/x86_64-alpine-linux-musl/lib/libdatadog_profiling.a 80.15 MB 80.20 MB +.06% (+51.07 KB) 🔍
/x86_64-alpine-linux-musl/lib/libdatadog_profiling.so 9.87 MB 9.88 MB +.07% (+8.00 KB) 🔍
x86_64-unknown-linux-gnu
Artifact Baseline Commit Change
/x86_64-unknown-linux-gnu/lib/libdatadog_profiling.a 100.25 MB 100.30 MB +.05% (+54.34 KB) 🔍
/x86_64-unknown-linux-gnu/lib/libdatadog_profiling.so 11.44 MB 11.45 MB +.08% (+9.42 KB) 🔍

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Projects

None yet

Development

Successfully merging this pull request may close these issues.

2 participants