DeepFold-PLM: Accelerating Protein Structure Prediction via Efficient Homology Search Using Protein Language Models
DeepFold-PLM accelerates protein structure prediction by integrating advanced protein language models with vector embedding databases to achieve ultra-fast MSA construction and enhanced structure prediction capabilities.
- ⚡ 47x Faster MSA Generation: Dramatically accelerated multiple sequence alignment construction
- 📈 Enhanced Diversity: Increased sequence diversity for better coevolutionary information
- 🚀 Superior Performance: Outperforms AlphaFold's JAX implementation for sequences longer than 3,000 residues
- ⚡ Optimized Attention: 6x faster than PyTorch baseline with custom CUDA kernels
- 🔧 Multi-GPU Scaling: Linear performance scaling across 1-4 NVIDIA A100 GPUs
- 🌐 User-Friendly Interface: Real-time analysis through web service
- 🔌 API Access: plmMSA API access with automatic pairing capabilities
✨ Try our fast plmMSA API - Get MSA results in seconds with automatic pairing support! Fully compatible with ColabFold and MMseqs2 API formats for seamless integration into your existing workflows.
Easy Integration with ColabFold:
from colabfold.batch import run
results = run(
queries=queries,
result_dir=result_dir,
use_templates=use_templates,
... # other parameters
host_url="https://df-plm.deepfold.org/api/colab"
)Easy Integration with Boltz:
boltz predict 8JEL.yaml --use_msa_server --msa_server_url "https://df-plm.deepfold.org/api/colab"REST API Example:
# Submit MSA job for protein complex
curl -X POST 'https://df-plm.deepfold.org/api/plmmsa/v1/submit' \
-H 'Content-Type: application/json' \
-d '{
"mode": "unpaired+paired",
"sequences": [
"MAHHHHHHVAVDAVSFTLLQDQLQSVLDTLSEREAGVVRLRFGLTDGQPRTLDEIGQVYGVTRERIRQIESKTMSKLRHPSRSQVLRDYLDGSSGSGTPEERLLRAIFGEKA",
"MRYAFAAEATTCNAFWRNVDMTVTALYEVPLGVCTQDPDRWTTTPDDEAKTLCRACPRRWLCARDAVESAGAEGLWAGVVIPESGRARAFALGQLRSLAERNGYPVRDHRVSAQSA"
]
}'
# Check job status (replace YOUR_JOB_ID with actual job ID)
curl -X GET 'https://df-plm.deepfold.org/api/plmmsa/v1/job/YOUR_JOB_ID'See plmMSA for more information.
🚀 Our optimized PyTorch implementation achieves significant speedups through:
- ⚡️ Multi-GPU parallelization
- 🔧 Custom CUDA kernels
- 💪 High-throughput processing
Enabling large-scale structural biology research and production deployments.
See DeepFold for more information.
Under Construction!, Explore (experimental): https://df-plm.deepfold.org/
If you use DeepFold-PLM in your research, please cite our paper:
@article{kim2025deepfold,
title={DeepFold-PLM: Accelerating Protein Structure Prediction via Efficient Homology Search Using Protein Language Models},
author={Kim, Minsoo and Bae, Hanjin and Jo, Gyeongpil and Kim, Kunwoo and Lee, Sung Jong and Yoo, Jejoong and Joo, Keehyoung},
journal={Bioinformatics},
volume={41},
issue={11},
doi={https://doi.org/10.1093/bioinformatics/btaf579},
year={2025},
publisher={Oxford University Press (OUP)},
pages={1--13},
url={https://df-plm.deepfold.org/}
}This project is licensed under the MIT License - see the LICENSE file for details.

