Skip to content

DeepLink-org/dlinfer

介绍

dlinfer提供了一套将国产硬件接入大模型推理框架的解决方案。 对上承接大模型推理框架,对下在eager模式下调用各厂商的融合算子,在graph模式下调用厂商的图引擎。 在dlinfer中,我们根据主流大模型推理框架与主流硬件厂商的融合算子粒度,定义了大模型推理的融合算子接口。

这套融合算子接口主要功能:

  1. 将对接框架与对接厂商融合算子在适配工程中有效解耦;
  2. 同时支持算子模式和图模式;
  3. 图模式下的图获取更加精确匹配,提高最终端到端性能;
  4. 同时支持LLM推理和VLM推理。

目前,我们正在全力支持LMDeploy适配国产芯片,包括华为,沐曦,寒武纪等。

架构介绍

组件介绍

  • op interface: 大模型推理算子接口,对齐了主流推理框架以及各个厂商的融合算子粒度。
    • 算子模式:在pytorch的eager模式下,我们将通过op interface向下分发到厂商kernel。由于各个厂商对于参数的数据排布有不同的偏好,所以在这里我们并不会规定数据排布,但是为了多硬件的统一适配,我们将会统一参数的维度信息。
    • 图模式:在极致性能的驱动下,在一些硬件上的推理场景中需要依靠图模式。我们利用Pytorch2中的Dynamo编译路线,通过统一的大模型推理算子接口,获取较为粗粒度算子的计算图,并将计算图通过IR转换后提供给硬件厂商的图编译器。
  • framework adaptor: 将大模型推理算子接口加入推理框架中,并且对齐算子接口的参数。
  • kernel adaptor: 吸收了大模型推理算子接口参数和硬件厂商融合算子参数间的差异。

安装方法

各平台镜像地址

  • Atlas 800T A3: docker pull crpi-4crprmm5baj1v8iv.cn-hangzhou.personal.cr.aliyuncs.com/lmdeploy_dlinfer/ascend:a3-latest (Atlas 800T A3目前只支持Qwen系列的算子模式下运行)

  • Atlas 800T A2: docker pull crpi-4crprmm5baj1v8iv.cn-hangzhou.personal.cr.aliyuncs.com/lmdeploy_dlinfer/ascend:a2-latest

  • Atlas 300I Duo: docker pull crpi-4crprmm5baj1v8iv.cn-hangzhou.personal.cr.aliyuncs.com/lmdeploy_dlinfer/ascend:300i-duo-latest (Atlas 300I Duo目前只支持非eager模式)

  • 沐曦C500 docker pull crpi-4crprmm5baj1v8iv.cn-hangzhou.personal.cr.aliyuncs.com/lmdeploy_dlinfer/maca:latest

  • 寒武纪云端加速卡 docker pull crpi-4crprmm5baj1v8iv.cn-hangzhou.personal.cr.aliyuncs.com/lmdeploy_dlinfer/camb:latest

pip安装

pip install dlinfer-ascend

目前只有华为的Atlas 800T A2与300I Duo支持pip安装。其他硬件请使用源码安装。

源码安装

华为Atlas 800T A2/A3/300I Duo

  1. 在Atlas 800T A2上依赖torch和torch_npu,运行以下命令安装torch、torch_npu及其依赖。

    pip3 install -r requirements/ascend/full.txt
  2. 完成上述准备工作后,使用如下命令即可安装dlinfer。

    cd /path_to_dlinfer
    DEVICE=ascend python3 setup.py develop

沐曦C500

  1. 沐曦软件栈请自行联系沐曦相关人员。

  2. 沐曦版本的dlinfer安装命令如下:

    cd /path_to_dlinfer
    DEVICE=maca python3 setup.py develop

寒武纪云端智能加速卡

  1. 寒武纪软件栈请自行联系寒武纪相关人员。

  2. 寒武纪版本的dlinfer安装命令如下:

    cd /path_to_dlinfer
    DEVICE=camb python3 setup.py develop

支持模型框架列表

LMDeploy

Atlas 800T A2 Atlas 800T A2 Atlas 800T A2 Atlas 800T A2 Atlas 300I Duo Atlas 800T A3 Maca C500 Cambricon
Model Size Type FP16/BF16(eager) FP16/BF16(graph) W8A8(graph) W4A16(eager) FP16(graph) FP16/BF16(eager) BF/FP16 BF/FP16
Llama2 7B - 70B LLM Yes Yes Yes Yes - Yes Yes Yes
Llama3 8B LLM Yes Yes Yes Yes Yes Yes Yes Yes
Llama3.1 8B LLM Yes Yes Yes Yes Yes Yes Yes Yes
InternLM2 7B - 20B LLM Yes Yes Yes Yes Yes Yes Yes Yes
InternLM2.5 7B - 20B LLM Yes Yes Yes Yes Yes Yes Yes Yes
InternLM3 8B LLM Yes Yes Yes Yes Yes Yes Yes Yes
Mixtral 8x7B LLM Yes Yes No No Yes - Yes Yes
QWen1.5-MoE A2.7B LLM Yes - No No - - Yes -
QWen2(.5) 7B LLM Yes Yes Yes Yes Yes - Yes Yes
QWen2-VL 2B, 7B MLLM Yes Yes - - - - Yes No
QWen2.5-VL 3B - 72B MLLM Yes Yes - - Yes - Yes No
QWen2-MoE A14.57B LLM Yes - No No - - Yes -
QWen3 0.6B-235B LLM Yes Yes No No Yes Yes Yes Yes
DeepSeek-V2 16B LLM No Yes No No - - - -
InternVL(v1.5) 2B-26B MLLM Yes - Yes Yes - - Yes -
InternVL2 1B-40B MLLM Yes Yes Yes Yes Yes - Yes Yes
InternVL2.5 1B-78B MLLM Yes Yes Yes Yes Yes - Yes Yes
InternVL3 1B-78B MLLM Yes Yes Yes Yes Yes - Yes Yes
CogVLM2-chat 19B MLLM Yes No - - - - Yes -
GLM4V 9B MLLM Yes No - - - - - -

‘Yes’代表测试通过,‘No’代表不支持,‘-’代表未测试

使用LMDeploy

LMDeploy安装:

cd /path_to_lmdeploy
# 华为
LMDEPLOY_TARGET_DEVICE=ascend pip3 install -e .
# 沐曦
LMDEPLOY_TARGET_DEVICE=maca   pip3 install -e .
# 寒武纪
LMDEPLOY_TARGET_DEVICE=camb   pip3 install -e .

只需要指定pytorch engine后端为ascend/maca/camb,不需要其他任何修改即可。详细可参考lmdeploy文档。

Caution

寒武纪环境下必须把PytorchEnginConfig中的block_size设为16

示例代码如下:

import lmdeploy
from lmdeploy import PytorchEngineConfig
pipe = lmdeploy.pipeline("/path_to_model",
               backend_config = PytorchEngineConfig(tp=1,
               cache_max_entry_count=0.4, device_type="ascend", eager_mode=True))
question = ["Shanghai is", "Please introduce China", "How are you?"]
response = pipe(question, request_output_len=256, do_preprocess=False)
for idx, r in enumerate(response):
    print(f"Q: {question[idx]}")
    print(f"A: {r.text}")
    print()

Tip

图模式已经支持除了昇腾A3之外的所有硬件。

用户可以在离线模式下设定PytorchEngineConfig中的eager_mode=False来开启图模式,或者设定eager_mode=True来关闭图模式。 在线模式下默认开启图模式,请添加--eager-mode来关闭图模式。

Important

目前寒武纪加速卡上启动多卡推理需要手动启动ray。

下面是一个2卡的例子:

 export MLU_VISIBLE_DEVICES=0,1
 ray start --head --resources='{"MLU": 2}'

About

No description, website, or topics provided.

Resources

License

Code of conduct

Stars

Watchers

Forks

Packages

No packages published

Contributors 10