- This is implementation of vanilla SWIN transformer
- Trained and evaluated on CIFAR10 dataset
- SWIN architecture paper - https://arxiv.org/pdf/2103.14030
-
Create venv from requirements.txt
pip install -r requirements.txt -
You can look at the availible parameters
python train.py --help -
Then you can start training with your parameters
python train.py --metrics_path='./data/default_paramters'
Cutmix+Mixup
-
Best accuracy on CIFAR10 dataset - 0.9056640625
{"best_valid_ce": 0.3095529355108738, "best_valid_accuracy": 0.9056640625, "image_size": 32, "num_classes": 10, "batch_size": 256, "learning_rate": 0.001, "weight_decay": 0.1, "n_epochs": 700}
