Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
61 changes: 61 additions & 0 deletions SampleDataDemo.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,61 @@
### Modify NT3_baseline_keras2.py or similar
# add a 'sample' parameter to gParameters to trigger

import random

def load_data(train_path, test_path, gParameters):

print('Loading data...')
df_train = (pd.read_csv(train_path,header=None).values).astype('float32')
df_test = (pd.read_csv(test_path,header=None).values).astype('float32')
print('done')

print('df_train shape:', df_train.shape)
print('df_test shape:', df_test.shape)

seqlen = df_train.shape[1]

df_y_train = df_train[:,0].astype('int')
df_y_test = df_test[:,0].astype('int')

Y_train = np_utils.to_categorical(df_y_train,gParameters['classes'])
Y_test = np_utils.to_categorical(df_y_test,gParameters['classes'])

df_x_train = df_train[:, 1:seqlen].astype(np.float32)
df_x_test = df_test[:, 1:seqlen].astype(np.float32)

# X_train = df_x_train.as_matrix()
# X_test = df_x_test.as_matrix()

X_train = df_x_train
X_test = df_x_test

scaler = MaxAbsScaler()
mat = np.concatenate((X_train, X_test), axis=0)
mat = scaler.fit_transform(mat)

X_train = mat[:X_train.shape[0], :]
X_test = mat[X_train.shape[0]:, :]
X_train = mat[:X_train.shape[0], :]
X_test = mat[X_train.shape[0]:, :]

sample = gParameters.get('sample', False)
if sample:
select = get_sample(X_train.shape[0], sample)
X_train = X_train[select]
Y_train = Y_train[select]

return X_train, Y_train, X_test, Y_test

def get_sample(population, sample):
""" Choose a random sample from a population of the given size.
If the sample parameter is > 0,
draw a random sample of the size or proportion given.
If 0 < sample < 1, returns sample * population;
otherwise, sample should be an int < population"""

if 0.0 < sample < 1.0:
size = int(np.ceil(sample * population))
else:
size = int(sample)
return random.sample(range(int(population)), size)