Skip to content

Add test cases for add operation in NNlib.scatter #1545

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 10 commits into
base: main
Choose a base branch
from
42 changes: 42 additions & 0 deletions test/nn/nnlib.jl
Original file line number Diff line number Diff line change
Expand Up @@ -629,6 +629,48 @@ end

test_scatter(dsts, srcs, idxs, res; dims=[0, 1])
end

@testset "scatter gradient" begin
dst = Float32[
3 3 4 4 5
5 5 6 6 7
]
dst_ca = Reactant.to_rarray(dst)

src = ones(Float32, 2, 5)
src_ca = Reactant.to_rarray(src)

idx = [4, 2, 1, 5, 3]
idx_ca = Reactant.to_rarray(idx)

function test_scatter(dsts, srcs, idxs)
return sum(NNlib.scatter!(+, dsts, srcs, idxs))
end

function test_gradient(objective_function, dsts, srcs, idxs)
derivs, val = Enzyme.gradient(
Enzyme.set_abi(Enzyme.ReverseWithPrimal, Reactant.ReactantABI),
Const(objective_function),
dsts,
srcs,
idxs,
)
return derivs, val
end

test_gradient_compiled = @compile test_gradient(
test_scatter, dst_ca, src_ca, idx_ca
)

grads_enz, loss_enz = Enzyme.gradient(
Enzyme.ReverseWithPrimal, Const(test_scatter), dst, src, idx
)
grads_ca, loss_ca = test_gradient_compiled(test_scatter, dst_ca, src_ca, idx_ca)

@test grads_enz[1] ≈ Array(grads_ca[1])
@test grads_enz[2] ≈ Array(grads_ca[2])
@test loss_enz ≈ loss_ca
end
end

@testset "∇conv(D = $ndim)" for ndim in 1:3
Expand Down
Loading