Skip to content

EpiGenomicsCode/RFDiffusion-OOD

Repository files navigation

RFdiffusion Open OnDemand Application

Description

Web interface for protein design using RFdiffusion on HPC clusters. Enables:

  • De novo protein generation
  • Motif scaffolding
  • Binder design
  • Symmetric oligomer generation
  • Partial diffusion workflows

Features

Core Capabilities

  • Five Design Modes:
    • Binder Design: Create protein binders with specified interfaces
    • Motif Scaffolding: Scaffold functional motifs into stable structures
    • Partial Diffusion: Controlled generation with adjustable noise steps
    • Unconditional Generation: Fully automated protein design
    • Symmetric Design: Generate symmetric protein assemblies

Advanced Functionality

  • Hotspot Residue Specification: Paint key interaction residues
  • Fold Conditioning: Guide generation with structural constraints
  • Auxiliary Potentials: Incorporate energy-based guidance
  • Inpainting: Combine sequence/structure constraints
  • Flexible Peptide Handling: Design with dynamic binding partners

System Requirements

Hardware

  • NVIDIA GPU (A100/V100 recommended)
  • 60GB+ GPU memory
  • 100GB+ temporary storage

Software

  • Singularity 3.7+
  • CUDA 11.6
  • Python 3.9
  • SE(3)-Transformer

Installation

  1. Clone Repository:
git clone https://github.com/EpiGenomicsCode/RFDiffusion-OOD.git
cd RFDiffusion-OOD
  1. Retrieve Singularity Container From ICDS:
rsync -avP path/torfdiffusion_container.sif .

Usage

Web Interface

  1. Access Open OnDemand portal

  2. Navigate to "RFdiffusion Protein Design"

  3. Configure parameters:

    • Design Mode: Select workflow type
    • Input Structure: Upload PDB (if required)
    • Design Parameters:
      • Number of designs (1-100)
      • Diffusion timesteps (20-200)
      • Symmetry type (if applicable)
      • Potential guidance (optional)
  4. Submit job through interactive form

Command Line Options

Example scaffolded binder design:

./scripts/run_inference.py \
  inference.input_pdb=input.pdb \
  inference.output_prefix=outputs/binder_design \
  scaffoldguided.scaffoldguided=True \
  'ppi.hotspot_res=[A59,A83,A91]' \
  inference.num_designs=10 \
  denoiser.noise_scale_ca=0

Common parameters:

  • contigmap.contigs: Structural constraints
  • potentials.guiding_potentials: Energy guidance
  • symmetry.symmetry_type: Assembly symmetry
  • partial_diffusion.partial_T: Noise steps

Output Structure

working_dir/
├── inputs/              # Uploaded PDB files
├── outputs/
│   ├── designs/         # Generated PDB structures
│   ├── scores/          # Design metrics
│   └── visualizations/  # 3D previews
├── logs/
│   ├── diffusion.log    # Full process log
│   └── status.json      # Progress tracking
└── schedules/           # Diffusion cache

Monitoring

Real-time tracking includes:

  • Diffusion progress
  • Energy landscape exploration
  • Structural validation metrics
  • Resource utilization

Troubleshooting

Issue Solution
CUDA OOM Reduce num_designs or use simpler contigs
Invalid PDB Verify input structure with pdb-tools
Symmetry failures Check symmetry parameters match input
Potential guidance conflicts Adjust potential weights

License

MIT License

Acknowledgements

  • RFdiffusion by Rosetta Commons
  • NVIDIA SE3-Transformer
  • This project is generously funded by Cornell University BRC Epigenomics Core Facility (RRID:SCR_021287), Penn State Institute for Computational and Data Sciences (RRID:SCR_025154) and Penn State University Center for Applications of Artificial Intelligence and Machine Learning to Industry Core Facility (RRID:SCR_022867)

Contact

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published