Web interface for protein design using RFdiffusion on HPC clusters. Enables:
- De novo protein generation
- Motif scaffolding
- Binder design
- Symmetric oligomer generation
- Partial diffusion workflows
- Five Design Modes:
- Binder Design: Create protein binders with specified interfaces
- Motif Scaffolding: Scaffold functional motifs into stable structures
- Partial Diffusion: Controlled generation with adjustable noise steps
- Unconditional Generation: Fully automated protein design
- Symmetric Design: Generate symmetric protein assemblies
- Hotspot Residue Specification: Paint key interaction residues
- Fold Conditioning: Guide generation with structural constraints
- Auxiliary Potentials: Incorporate energy-based guidance
- Inpainting: Combine sequence/structure constraints
- Flexible Peptide Handling: Design with dynamic binding partners
- NVIDIA GPU (A100/V100 recommended)
- 60GB+ GPU memory
- 100GB+ temporary storage
- Singularity 3.7+
- CUDA 11.6
- Python 3.9
- SE(3)-Transformer
- Clone Repository:
git clone https://github.com/EpiGenomicsCode/RFDiffusion-OOD.git
cd RFDiffusion-OOD- Retrieve Singularity Container From ICDS:
rsync -avP path/torfdiffusion_container.sif .-
Access Open OnDemand portal
-
Navigate to "RFdiffusion Protein Design"
-
Configure parameters:
- Design Mode: Select workflow type
- Input Structure: Upload PDB (if required)
- Design Parameters:
- Number of designs (1-100)
- Diffusion timesteps (20-200)
- Symmetry type (if applicable)
- Potential guidance (optional)
-
Submit job through interactive form
Example scaffolded binder design:
./scripts/run_inference.py \
inference.input_pdb=input.pdb \
inference.output_prefix=outputs/binder_design \
scaffoldguided.scaffoldguided=True \
'ppi.hotspot_res=[A59,A83,A91]' \
inference.num_designs=10 \
denoiser.noise_scale_ca=0Common parameters:
contigmap.contigs: Structural constraintspotentials.guiding_potentials: Energy guidancesymmetry.symmetry_type: Assembly symmetrypartial_diffusion.partial_T: Noise steps
working_dir/
├── inputs/ # Uploaded PDB files
├── outputs/
│ ├── designs/ # Generated PDB structures
│ ├── scores/ # Design metrics
│ └── visualizations/ # 3D previews
├── logs/
│ ├── diffusion.log # Full process log
│ └── status.json # Progress tracking
└── schedules/ # Diffusion cache
Real-time tracking includes:
- Diffusion progress
- Energy landscape exploration
- Structural validation metrics
- Resource utilization
| Issue | Solution |
|---|---|
| CUDA OOM | Reduce num_designs or use simpler contigs |
| Invalid PDB | Verify input structure with pdb-tools |
| Symmetry failures | Check symmetry parameters match input |
| Potential guidance conflicts | Adjust potential weights |
MIT License
- RFdiffusion by Rosetta Commons
- NVIDIA SE3-Transformer
- This project is generously funded by Cornell University BRC Epigenomics Core Facility (RRID:SCR_021287), Penn State Institute for Computational and Data Sciences (RRID:SCR_025154) and Penn State University Center for Applications of Artificial Intelligence and Machine Learning to Industry Core Facility (RRID:SCR_022867)
- Technical Support: [email protected]
- Application Maintainer: [email protected]