Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,7 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0

- A bug in which AWS S3 encryption was looked for in Nipype config instead of pipeline config (only affected uploading logs).
- Restored `bids-validator` functionality.
- A bug in which bandpass filters always assumed 1D regressor files have exactly 5 header rows.

### Removed

Expand Down
33 changes: 21 additions & 12 deletions CPAC/nuisance/bandpass.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,8 @@
import os
from pathlib import Path

import numpy as np
from numpy.typing import NDArray
import nibabel as nib
from scipy.fftpack import fft, ifft

Expand Down Expand Up @@ -44,6 +46,22 @@ def ideal_bandpass(data, sample_period, bandpass_freqs):
return np.real_if_close(ifft(f_data)[:sample_length])


def read_1D(one_D: Path | str) -> tuple[list[str], NDArray]:
"""Parse a header from a 1D file, returing that header and a Numpy Array."""
header = []
with open(one_D, "r") as _f:
# Each leading line that doesn't start with a number goes into the header
for line in _f.readlines():
try:
float(line.split()[0])
break
except ValueError:
header.append(line)

regressor = np.loadtxt(one_D, skiprows=len(header))
return header, regressor


def bandpass_voxels(realigned_file, regressor_file, bandpass_freqs, sample_period=None):
"""Performs ideal bandpass filtering on each voxel time-series.

Expand Down Expand Up @@ -106,18 +124,9 @@ def bandpass_voxels(realigned_file, regressor_file, bandpass_freqs, sample_perio
img.to_filename(regressor_bandpassed_file)

else:
with open(regressor_file, "r") as f:
header = []

# header wouldn't be longer than 5, right? I don't want to
# loop over the whole file
for i in range(5):
line = f.readline()
if line.startswith("#") or isinstance(line[0], str):
header.append(line)

# usecols=[list]
regressor = np.loadtxt(regressor_file, skiprows=len(header))
header: list[str]
regressor: NDArray
header, regressor = read_1D(regressor_file)
Yc = regressor - np.tile(regressor.mean(0), (regressor.shape[0], 1))
Y_bp = np.zeros_like(Yc)

Expand Down
15 changes: 15 additions & 0 deletions CPAC/nuisance/tests/regressors.1D
Original file line number Diff line number Diff line change
@@ -0,0 +1,15 @@
# Extra header
# extra header
# C-PAC 1.8.7.dev1
# Nuisance regressors:
# RotY RotYDelay RotYSq RotYDelaySq RotX RotXDelay RotXSq RotXDelaySq RotZ RotZDelay RotZSq RotZDelaySq Y YDelay YSq YDelaySq X XDelay XSq XDelaySq Z ZDelay ZSq ZDelaySq aCompCorDetrendPC0 aCompCorDetrendPC1 aCompCorDetrendPC2 aCompCorDetrendPC3 aCompCorDetrendPC4
0.064503015618032941 0.000000000000000000 0.004160639023820202 0.000000000000000000 0.071612848897811346 0.000000000000000000 0.005128400127260760 0.000000000000000000 -0.045875642036314265 0.000000000000000000 0.002104574532244045 0.000000000000000000 0.132890000000000008 0.000000000000000000 0.017659752100000002 0.000000000000000000 0.014942199999999999 0.000000000000000000 0.000223269340840000 0.000000000000000000 0.000408556000000000 0.000000000000000000 0.000000166918005136 0.000000000000000000 -0.022348500000000000 0.024816700000000001 -0.096326200000000001 0.157762999999999987 -0.097873799999999997
0.031640849390966043 0.064503015618032941 0.001001143350181796 0.004160639023820202 0.128928108975928074 0.071612848897811346 0.016622457284108785 0.005128400127260760 -0.067560891370646151 -0.045875642036314265 0.004564474042796250 0.002104574532244045 0.031627599999999999 0.132890000000000008 0.001000305081760000 0.017659752100000002 0.038095700000000003 0.014942199999999999 0.001451282358490000 0.000223269340840000 -0.005307810000000000 0.000408556000000000 0.000028172846996100 0.000000166918005136 -0.064876000000000003 -0.013603499999999999 0.009020350000000000 -0.160142000000000007 -0.177807999999999994
0.014566182605406878 0.011659654350684051 0.001782025477654622 0.001708282485349496 0.087538262826358210 0.084814056613328720 0.003050410763897181 0.001983217145137512 -0.041453889502682612 -0.041248724781196566 0.000887045295189055 0.001102853114798172 0.024593061637466357 0.019123515563283400 -0.001171834437865083 -0.001702326740091272 0.013267008686230538 0.014908354440170480 -0.000023048542269668 0.000030800663864303 -0.003147503026503373 -0.002156489951271478 -0.000212523379574746 -0.000134571632225604 -0.005279020489008680 0.003309414394962159 0.006218425399968431 0.006926438427946187 0.031874911370701621
0.023012917432044880 0.023641462459337223 0.001353826869739763 0.001428748088263631 0.128401517423642225 0.127907328597750475 0.002936077845255422 0.001732591121410621 -0.064041009402203836 -0.065349619535801984 -0.001376339705694537 -0.000867347717315630 0.055371528230890282 0.047838664356472604 -0.003939704578469714 -0.004413819725322955 0.008626921921677059 0.013521224060128565 -0.000524131399781458 -0.000509996162422567 0.001399646015426790 0.002426771079716165 -0.000697817034458711 -0.000644064148730770 0.003453684797811343 0.004439728633043883 0.005528130051255496 -0.000681564743845684 0.027088427450170843
0.025438893846313822 0.030058212923250879 0.000838561693597976 0.001085005134557843 0.158696217127646116 0.160188595362451003 0.002834979654468744 0.001871305030454243 -0.079495085073931035 -0.083080090516398086 -0.003568788021910289 -0.002826331376429190 0.082500133838064399 0.073831252771084988 -0.006214900864815498 -0.006543763203955914 0.000519334243296480 0.008630341137520037 -0.000923363158038725 -0.000927750776503564 0.005165821347348335 0.005851034226762506 -0.001054704872395450 -0.001043041584010332 0.012752740283469200 0.004786640061712925 0.012289830660907162 -0.008745532683606035 0.014261415118720363
0.021743016120035281 0.029688950895877426 0.000290547599874028 0.000682055571198300 0.175549364989970313 0.178338230890874111 0.002486643991830800 0.002149192970833630 -0.085377454115175486 -0.091489126463240492 -0.005383312549059558 -0.004535185285883645 0.102288251365551003 0.094066918293276736 -0.007766221033112258 -0.007876677356441979 -0.010112433374632405 0.000319385240548675 -0.001198648271548705 -0.001193505340585474 0.008037366757553616 0.007980258888708817 -0.001242736103775270 -0.001273598198058523 0.020974706057590668 0.005751802778007228 0.025351389814577394 -0.017180756363741379 -0.003956879522184370
0.013525050094767123 0.023039913400015079 -0.000213791695822321 0.000249432472712464 0.178794499964418374 0.182090614749512603 0.001668344371008412 0.002226367140418777 -0.081444170893389012 -0.089634493861210238 -0.006575553895215308 -0.005785817468059847 0.112188805335497160 0.106323654207989879 -0.008527087208204130 -0.008379970470761666 -0.021551792557092900 -0.010410526495855658 -0.001350988613004632 -0.001312369367927021 0.010150399365352503 0.009047754995696919 -0.001267065761949068 -0.001322015050183638 0.027086406796860162 0.008769045224622980 0.041260717228531141 -0.025783341088905919 -0.023130294003556602
0.003710293144471088 0.012303012925884141 -0.000591683949645386 -0.000159272972606234 0.170628799324984620 0.173931286958495634 0.000283113801796188 0.001792439708046661 -0.069705778794223461 -0.078851018906234180 -0.007027047515815758 -0.006451875040969878 0.111350260801486828 0.109587738981351920 -0.008599721245876775 -0.008202102875302755 -0.031732073497397532 -0.021834007346710128 -0.001401093147591972 -0.001318145135788918 0.011803916636990694 0.009558331079300939 -0.001174308952196117 -0.001222014617445004 0.030766413414606002 0.014584179038094797 0.055050504861566943 -0.034070573320800129 -0.038211308729750156
-0.004234132549489960 0.000832649040004215 -0.000775011343076728 -0.000476609472781693 0.154706450373287646 0.158080166174354941 -0.001594467727120446 0.000677513943272737 -0.053855672812893871 -0.062403402297765788 -0.006775880525707196 -0.006520249171448194 0.100795197589240160 0.104212055737311265 -0.008213823778438519 -0.007620791647640451 -0.038786879957853938 -0.031921725342639970 -0.001382244593213621 -0.001261079549196342 0.013326020461721926 0.010106105453167591 -0.001035584634549134 -0.001043215412680393 0.032184969062050033 0.022685626981519318 0.061584251842384724 -0.041209431181336478 -0.044960991839340970
-0.007277482359979987 -0.007732524875134966 -0.000730772864804432 -0.000639221128232586 0.134982773383533428 0.139112331565989317 -0.003731084894624379 -0.001083447029356628 -0.038226479638264539 -0.044608858813448345 -0.006004861339980094 -0.006093216205261694 0.083174466753920082 0.091804401122952045 -0.007653794404152313 -0.006957769820022970 -0.041563433510437883 -0.038870841259792399 -0.001331418827716966 -0.001192680917598046 0.014941405278128142 0.011168243606804554 -0.000922586836031674 -0.000868492699062700 0.031582380224112708 0.031133381053542616 0.057080842480777161 -0.046093261482679442 -0.041188612349529960
48 changes: 48 additions & 0 deletions CPAC/nuisance/tests/test_bandpass.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,48 @@
# Copyright (C) 2022 - 2024 C-PAC Developers

# This file is part of C-PAC.

# C-PAC is free software: you can redistribute it and/or modify it under
# the terms of the GNU Lesser General Public License as published by the
# Free Software Foundation, either version 3 of the License, or (at your
# option) any later version.

# C-PAC is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
# License for more details.

# You should have received a copy of the GNU Lesser General Public
# License along with C-PAC. If not, see <https://www.gnu.org/licenses/>.
"""Tests for bandpass filters."""

from importlib.abc import Traversable
from importlib.resources import files
from pathlib import Path

from numpy.typing import NDArray
import pytest

from CPAC.nuisance.bandpass import read_1D

RAW_ONE_D: Traversable = files("CPAC").joinpath("nuisance/tests/regressors.1D")


@pytest.mark.parametrize("start_line", list(range(6)))
def test_read_1D(start_line: int, tmp_path: Path) -> None:
"""Test the correct number of rows are read when reading a 1D file."""
regressor: Path = tmp_path / f"regressor_startAtL{start_line}.1D"
# create a regressor.1D file with (5 - ``start_line``) lines of header
with (
RAW_ONE_D.open("r", encoding="utf-8") as _raw,
regressor.open("w", encoding="utf-8") as _test_file,
):
for line in _raw.readlines()[start_line:]:
_test_file.write(line)
header: list[str]
data: NDArray
header, data = read_1D(regressor)
# should get the same array no matter how many lines of header
assert data.shape == (10, 29)
# all header lines should be captured
assert len(header) == 5 - start_line