-
-
Notifications
You must be signed in to change notification settings - Fork 45
Add Numba void* -> typed-pointer intrinsics and tests #804
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: main
Are you sure you want to change the base?
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
|
|
@@ -159,3 +159,62 @@ def codegen(context, builder, signature, args): | |
|
|
||
| sig = numba.types.voidptr(arr) | ||
| return sig, codegen | ||
|
|
||
| def create_voidptr_to_dtype_ptr_caster( | ||
| target_dtype: numba.types.Type, | ||
| ) -> numba.extending.intrinsic: | ||
| """Factory that creates a Numba intrinsic casting void* to CPointer(target_dtype). | ||
|
|
||
| The produced intrinsic accepts either `CPointer(void)` or `voidptr` as input | ||
| (matching how UFCx kernels receive `custom_data`) and returns a | ||
| `CPointer(target_dtype)` for convenient indexed access in Numba cfuncs. | ||
|
|
||
| The voidptr cast is needed when: | ||
| - UFCx kernels pass custom_data as void* (the last parameter in tabulate_tensor) | ||
| - Users want to access structured runtime data (e.g., custom_data with element | ||
| tables) inside Numba-compiled kernels | ||
| - Type-safe indexed access is required (e.g., custom_data[0], custom_data[1]) | ||
|
|
||
| Args: | ||
| target_dtype: A Numba scalar type (e.g. `numba.types.float64`). | ||
|
|
||
| Returns: | ||
| A Numba intrinsic function that performs the cast. | ||
| """ | ||
|
|
||
| @numba.extending.intrinsic | ||
| def voidptr_to_dtype_ptr(typingctx, src): | ||
| # Accept void pointers in various Numba representations: | ||
| # - CPointer(void): from UFCx cfunc signatures (shows as 'none*') | ||
| # - voidptr: from numba.cfunc("...(voidptr)") signatures | ||
sclaus2 marked this conversation as resolved.
Show resolved
Hide resolved
|
||
| is_cpointer_void = ( | ||
| isinstance(src, numba.types.CPointer) and src.dtype == numba.types.void | ||
| ) | ||
| is_voidptr = src == numba.types.voidptr | ||
|
|
||
| # Raise a clear error if the source type is not a void pointer | ||
| if not is_cpointer_void and not is_voidptr: | ||
| msg = ( | ||
| "voidptr_to_dtype_ptr expects a void pointer (CPointer(void) or voidptr), " | ||
| f"got {src}. Ensure you are passing a void* " | ||
| "(e.g., custom_data from UFCx kernel signature)." | ||
| ) | ||
| raise numba.core.errors.TypingError(msg) | ||
|
|
||
| result_type = numba.types.CPointer(target_dtype) | ||
| sig = result_type(src) | ||
|
|
||
| def codegen(context, builder, signature, args): | ||
| [src_val] = args | ||
| dst_type = context.get_value_type(result_type) | ||
| return builder.bitcast(src_val, dst_type) | ||
|
|
||
| return sig, codegen | ||
|
|
||
| return voidptr_to_dtype_ptr | ||
|
|
||
| # Pre-built casters for common types (convenience wrappers) | ||
|
Member
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Remove these, trivial and add clutter. |
||
| voidptr_to_float64_ptr = create_voidptr_to_dtype_ptr_caster(numba.types.float64) | ||
| voidptr_to_float32_ptr = create_voidptr_to_dtype_ptr_caster(numba.types.float32) | ||
| voidptr_to_int32_ptr = create_voidptr_to_dtype_ptr_caster(numba.types.int32) | ||
| voidptr_to_int64_ptr = create_voidptr_to_dtype_ptr_caster(numba.types.int64) | ||
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,165 @@ | ||
| # Test that the Numba voidptr -> typed pointer caster works in ffcx utils | ||
| import ctypes | ||
|
|
||
| import numpy as np | ||
| import pytest | ||
|
|
||
| from ffcx.codegeneration.utils import ( | ||
| numba_ufcx_kernel_signature, | ||
| voidptr_to_float64_ptr, | ||
| voidptr_to_int32_ptr, | ||
| ) | ||
|
|
||
| # Skip the tests if Numba is not available in the environment. | ||
| numba = pytest.importorskip("numba") | ||
|
|
||
|
|
||
| def test_numba_voidptr_caster_basic(): | ||
| """Simple test: Numba cfunc reads a double from custom_data via the caster.""" | ||
| sig = numba_ufcx_kernel_signature(np.float64, np.float64) | ||
|
|
||
| @numba.cfunc(sig, nopython=True) | ||
| def tabulate(b_, w_, c_, coords_, local_index, orientation, custom_data): | ||
| b = numba.carray(b_, (1,), dtype=np.float64) | ||
| # Cast void* to float64* | ||
| typed = voidptr_to_float64_ptr(custom_data) | ||
| b[0] = typed[0] | ||
|
|
||
| # Prepare arguments | ||
| b = np.zeros(1, dtype=np.float64) | ||
| w = np.zeros(1, dtype=np.float64) | ||
| c = np.zeros(1, dtype=np.float64) | ||
| coords = np.zeros(9, dtype=np.float64) | ||
| local_index = np.array([0], dtype=np.int32) | ||
| orientation = np.array([0], dtype=np.uint8) | ||
|
|
||
| # custom_data: single double value | ||
| val = np.array([2.5], dtype=np.float64) | ||
| val_ptr = val.ctypes.data | ||
|
|
||
| # Call the compiled cfunc via ctypes | ||
| tabulate.ctypes( | ||
| b.ctypes.data_as(ctypes.POINTER(ctypes.c_double)), | ||
| w.ctypes.data_as(ctypes.POINTER(ctypes.c_double)), | ||
| c.ctypes.data_as(ctypes.POINTER(ctypes.c_double)), | ||
| coords.ctypes.data_as(ctypes.POINTER(ctypes.c_double)), | ||
| local_index.ctypes.data_as(ctypes.POINTER(ctypes.c_int)), | ||
| orientation.ctypes.data_as(ctypes.POINTER(ctypes.c_uint8)), | ||
| ctypes.c_void_p(val_ptr), | ||
| ) | ||
|
|
||
| assert b[0] == pytest.approx(2.5) | ||
|
|
||
|
|
||
| def test_numba_voidptr_caster_int32(): | ||
| """Test casting void* to int32* and reading an integer value.""" | ||
| sig = numba_ufcx_kernel_signature(np.float64, np.float64) | ||
|
|
||
| @numba.cfunc(sig, nopython=True) | ||
| def tabulate(b_, w_, c_, coords_, local_index, orientation, custom_data): | ||
| b = numba.carray(b_, (1,), dtype=np.float64) | ||
| typed = voidptr_to_int32_ptr(custom_data) | ||
| # Promote int32 to float64 for the output | ||
| b[0] = typed[0] | ||
|
|
||
| b = np.zeros(1, dtype=np.float64) | ||
| w = np.zeros(1, dtype=np.float64) | ||
| c = np.zeros(1, dtype=np.float64) | ||
| coords = np.zeros(9, dtype=np.float64) | ||
| local_index = np.array([0], dtype=np.int32) | ||
| orientation = np.array([0], dtype=np.uint8) | ||
|
|
||
| val = np.array([7], dtype=np.int32) | ||
| val_ptr = val.ctypes.data | ||
|
|
||
| tabulate.ctypes( | ||
| b.ctypes.data_as(ctypes.POINTER(ctypes.c_double)), | ||
| w.ctypes.data_as(ctypes.POINTER(ctypes.c_double)), | ||
| c.ctypes.data_as(ctypes.POINTER(ctypes.c_double)), | ||
| coords.ctypes.data_as(ctypes.POINTER(ctypes.c_double)), | ||
| local_index.ctypes.data_as(ctypes.POINTER(ctypes.c_int)), | ||
| orientation.ctypes.data_as(ctypes.POINTER(ctypes.c_uint8)), | ||
| ctypes.c_void_p(val_ptr), | ||
| ) | ||
|
|
||
| assert b[0] == pytest.approx(7.0) | ||
|
|
||
|
|
||
| def test_numba_voidptr_caster_multiple_params(): | ||
| """Test reading multiple float64 parameters from custom_data.""" | ||
| sig = numba_ufcx_kernel_signature(np.float64, np.float64) | ||
|
|
||
| @numba.cfunc(sig, nopython=True) | ||
| def tabulate(b_, w_, c_, coords_, local_index, orientation, custom_data): | ||
| b = numba.carray(b_, (1,), dtype=np.float64) | ||
| typed = voidptr_to_float64_ptr(custom_data) | ||
| b[0] = typed[0] + typed[1] + typed[2] | ||
|
|
||
| b = np.zeros(1, dtype=np.float64) | ||
| w = np.zeros(1, dtype=np.float64) | ||
| c = np.zeros(1, dtype=np.float64) | ||
| coords = np.zeros(9, dtype=np.float64) | ||
| local_index = np.array([0], dtype=np.int32) | ||
| orientation = np.array([0], dtype=np.uint8) | ||
|
|
||
| vals = np.array([1.5, 2.0, 3.0], dtype=np.float64) | ||
| vals_ptr = vals.ctypes.data | ||
|
|
||
| tabulate.ctypes( | ||
| b.ctypes.data_as(ctypes.POINTER(ctypes.c_double)), | ||
| w.ctypes.data_as(ctypes.POINTER(ctypes.c_double)), | ||
| c.ctypes.data_as(ctypes.POINTER(ctypes.c_double)), | ||
| coords.ctypes.data_as(ctypes.POINTER(ctypes.c_double)), | ||
| local_index.ctypes.data_as(ctypes.POINTER(ctypes.c_int)), | ||
| orientation.ctypes.data_as(ctypes.POINTER(ctypes.c_uint8)), | ||
| ctypes.c_void_p(vals_ptr), | ||
| ) | ||
|
|
||
| assert b[0] == pytest.approx(6.5) | ||
|
|
||
|
|
||
| def test_numba_voidptr_struct_like_mixed_types(): | ||
|
Member
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Just keep this most complex text - the others do not add much, but do add a maintenance burden. |
||
| """Test reading a struct-like mixed-type buffer: float64 + int32. | ||
| We create a NumPy structured array with fields ('scale', float64) and | ||
| ('id', int32) with padding to align to 16 bytes. The kernel casts the | ||
| void* to float64* and int32* and reads the corresponding offsets. | ||
| """ | ||
| sig = numba_ufcx_kernel_signature(np.float64, np.float64) | ||
|
|
||
| @numba.cfunc(sig, nopython=True) | ||
| def tabulate(b_, w_, c_, coords_, local_index, orientation, custom_data): | ||
| b = numba.carray(b_, (1,), dtype=np.float64) | ||
| fptr = voidptr_to_float64_ptr(custom_data) | ||
| iptr = voidptr_to_int32_ptr(custom_data) | ||
| scale = fptr[0] | ||
|
Member
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Bit hairy, in the future we should look and see if we can reinterpret the struct with its fields and let numba/llvm handle the offsets for us.
Contributor
Author
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I made some attempts but have not been able to find a nice and robust way yet. I tried with record caster. |
||
| # int32 index for offset 8 bytes == 8/4 == 2 | ||
| id_val = iptr[2] | ||
| b[0] = scale + id_val | ||
|
|
||
| b = np.zeros(1, dtype=np.float64) | ||
| w = np.zeros(1, dtype=np.float64) | ||
| c = np.zeros(1, dtype=np.float64) | ||
| coords = np.zeros(9, dtype=np.float64) | ||
| local_index = np.array([0], dtype=np.int32) | ||
| orientation = np.array([0], dtype=np.uint8) | ||
|
|
||
| # structured dtype: float64 at offset 0, int32 at offset 8, with C-compatible alignment | ||
| dtype = np.dtype([("scale", np.float64), ("id", np.int32)], align=True) | ||
| arr = np.zeros(1, dtype=dtype) | ||
| arr["scale"][0] = 1.25 | ||
| arr["id"][0] = 5 | ||
|
|
||
| ptr = arr.ctypes.data | ||
|
|
||
| tabulate.ctypes( | ||
| b.ctypes.data_as(ctypes.POINTER(ctypes.c_double)), | ||
| w.ctypes.data_as(ctypes.POINTER(ctypes.c_double)), | ||
| c.ctypes.data_as(ctypes.POINTER(ctypes.c_double)), | ||
| coords.ctypes.data_as(ctypes.POINTER(ctypes.c_double)), | ||
| local_index.ctypes.data_as(ctypes.POINTER(ctypes.c_int)), | ||
| orientation.ctypes.data_as(ctypes.POINTER(ctypes.c_uint8)), | ||
| ctypes.c_void_p(ptr), | ||
| ) | ||
|
|
||
| assert b[0] == pytest.approx(6.25) | ||
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Make private i.e. add
_to front.