Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@ ChainRulesCore = "1.12"
Functors = "0.3, 0.4"
MLUtils = "0.2, 0.3.1, 0.4"
MacroTools = "0.5"
NNlib = "0.8.9"
NNlib = "0.8.14"
NNlibCUDA = "0.2.4"
OneHotArrays = "0.1, 0.2"
Optimisers = "0.2.12"
Expand Down
14 changes: 7 additions & 7 deletions src/layers/basic.jl
Original file line number Diff line number Diff line change
Expand Up @@ -167,12 +167,12 @@ end

@functor Dense

function (a::Dense)(x::AbstractVecOrMat)
σ = NNlib.fast_act(a.σ, x) # replaces tanh => tanh_fast, etc
return σ.(a.weight * x .+ a.bias)
end
(a::Dense)(x::AbstractVecOrMat) = bias_act!(a.σ, a.weight * x, a.bias)

(a::Dense)(x::AbstractArray) =
(a::Dense{typeof(identity), <:AbstractMatrix, <:AbstractVector})(x::AbstractVecOrMat) =
muladd(a.weight, x, a.bias) # fast path, fuse addition

(a::Dense)(x::AbstractArray) =
reshape(a(reshape(x, size(x,1), :)), :, size(x)[2:end]...)

function Base.show(io::IO, l::Dense)
Expand All @@ -194,7 +194,7 @@ Create an element-wise layer, whose forward pass is given by:
y = σ.(scale .* x .+ bias)

This uses `.*` instead of matrix multiplication `*` of [`Dense`](@ref).

The learnable scale & bias are initialised `init(size...)` and `zeros32(size...)`,
with `init=ones32` by default. You may specify the function `init`,
turn off trainable bias with `bias=false`, or provide the array(s) explicitly.
Expand Down Expand Up @@ -434,7 +434,7 @@ function (a::Bilinear)(x::AbstractMatrix, y::AbstractMatrix)
Z = reshape(Wyx, (d_z, :))

# @einsum out[o,s] := σ(Z[o,i] + b[o])
σ.(Z .+ b)
bias_act!(σ, Z, b)
end

(a::Bilinear)(x::AbstractVecOrMat) = a(x, x)
Expand Down
14 changes: 7 additions & 7 deletions src/layers/conv.jl
Original file line number Diff line number Diff line change
Expand Up @@ -163,7 +163,7 @@ end
function Conv(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity;
init = glorot_uniform, stride = 1, pad = 0, dilation = 1, groups = 1,
bias = true) where N

weight = convfilter(k, ch; init, groups)
Conv(weight, bias, σ; stride, pad, dilation, groups)
end
Expand Down Expand Up @@ -195,9 +195,9 @@ conv_dims(c::Conv, x::AbstractArray) =
ChainRulesCore.@non_differentiable conv_dims(::Any, ::Any)

function (c::Conv)(x::AbstractArray)
σ = NNlib.fast_act(c.σ, x)
cdims = conv_dims(c, x)
σ.(conv(x, c.weight, cdims) .+ conv_reshape_bias(c))
y = conv(x, c.weight, cdims)
bias_act!(c.σ, y, conv_reshape_bias(c))
end

_channels_in(l::Conv) = size(l.weight, ndims(l.weight)-1) * l.groups
Expand Down Expand Up @@ -328,9 +328,9 @@ end
ChainRulesCore.@non_differentiable conv_transpose_dims(::Any, ::Any)

function (c::ConvTranspose)(x::AbstractArray)
σ = NNlib.fast_act(c.σ, x)
cdims = conv_transpose_dims(c, x)
σ.(∇conv_data(x, c.weight, cdims) .+ conv_reshape_bias(c))
y = ∇conv_data(x, c.weight, cdims)
bias_act!(c.σ, y, conv_reshape_bias(c))
end

function Base.show(io::IO, l::ConvTranspose)
Expand Down Expand Up @@ -466,9 +466,9 @@ crosscor_dims(c::CrossCor, x::AbstractArray) =
ChainRulesCore.@non_differentiable crosscor_dims(::Any, ::Any)

function (c::CrossCor)(x::AbstractArray)
σ = NNlib.fast_act(c.σ, x)
cdims = crosscor_dims(c, x)
σ.(crosscor(x, c.weight, cdims) .+ conv_reshape_bias(c))
y = crosscor(x, c.weight, cdims)
bias_act!(c.σ, y, conv_reshape_bias(c))
end

function Base.show(io::IO, l::CrossCor)
Expand Down
3 changes: 1 addition & 2 deletions src/layers/recurrent.jl
Original file line number Diff line number Diff line change
Expand Up @@ -202,8 +202,7 @@ RNNCell((in, out)::Pair, σ=tanh; init=Flux.glorot_uniform, initb=zeros32, init_

function (m::RNNCell{F,I,H,V,<:AbstractMatrix{T}})(h, x::Union{AbstractVecOrMat{T},OneHotArray}) where {F,I,H,V,T}
Wi, Wh, b = m.Wi, m.Wh, m.b
σ = NNlib.fast_act(m.σ, x)
h = σ.(Wi*x .+ Wh*h .+ b)
h = bias_act!(m.σ, Wi*x, muladd(Wh, h, b))
return h, reshape_cell_output(h, x)
end

Expand Down