Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,6 @@ filterpy
h5py

# verified versions
onnx==1.8.1
onnxruntime==1.8.0
onnx==1.17.0
onnxruntime==1.20.1
onnx-simplifier==0.3.5
2 changes: 1 addition & 1 deletion yolox/tracker/byte_tracker.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@ class STrack(BaseTrack):
def __init__(self, tlwh, score):

# wait activate
self._tlwh = np.asarray(tlwh, dtype=np.float)
self._tlwh = np.asarray(tlwh, dtype=np.float64)
self.kalman_filter = None
self.mean, self.covariance = None, None
self.is_activated = False
Expand Down
12 changes: 6 additions & 6 deletions yolox/tracker/matching.py
Original file line number Diff line number Diff line change
Expand Up @@ -58,13 +58,13 @@ def ious(atlbrs, btlbrs):

:rtype ious np.ndarray
"""
ious = np.zeros((len(atlbrs), len(btlbrs)), dtype=np.float)
ious = np.zeros((len(atlbrs), len(btlbrs)), dtype=np.float64)
if ious.size == 0:
return ious

ious = bbox_ious(
np.ascontiguousarray(atlbrs, dtype=np.float),
np.ascontiguousarray(btlbrs, dtype=np.float)
np.ascontiguousarray(atlbrs, dtype=np.float64),
np.ascontiguousarray(btlbrs, dtype=np.float64)
)

return ious
Expand Down Expand Up @@ -118,13 +118,13 @@ def embedding_distance(tracks, detections, metric='cosine'):
:return: cost_matrix np.ndarray
"""

cost_matrix = np.zeros((len(tracks), len(detections)), dtype=np.float)
cost_matrix = np.zeros((len(tracks), len(detections)), dtype=np.float64)
if cost_matrix.size == 0:
return cost_matrix
det_features = np.asarray([track.curr_feat for track in detections], dtype=np.float)
det_features = np.asarray([track.curr_feat for track in detections], dtype=np.float64)
#for i, track in enumerate(tracks):
#cost_matrix[i, :] = np.maximum(0.0, cdist(track.smooth_feat.reshape(1,-1), det_features, metric))
track_features = np.asarray([track.smooth_feat for track in tracks], dtype=np.float)
track_features = np.asarray([track.smooth_feat for track in tracks], dtype=np.float64)
cost_matrix = np.maximum(0.0, cdist(track_features, det_features, metric)) # Nomalized features
return cost_matrix

Expand Down