Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions yolox/tracker/byte_tracker.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,15 +7,15 @@
import torch.nn.functional as F

from .kalman_filter import KalmanFilter
from yolox.tracker import matching
from ByteTrack.yolox.tracker import matching
from .basetrack import BaseTrack, TrackState

class STrack(BaseTrack):
shared_kalman = KalmanFilter()
def __init__(self, tlwh, score):

# wait activate
self._tlwh = np.asarray(tlwh, dtype=np.float)
self._tlwh = np.asarray(tlwh, dtype=float)
self.kalman_filter = None
self.mean, self.covariance = None, None
self.is_activated = False
Expand Down
16 changes: 8 additions & 8 deletions yolox/tracker/matching.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@
from scipy.spatial.distance import cdist

from cython_bbox import bbox_overlaps as bbox_ious
from yolox.tracker import kalman_filter
from ByteTrack.yolox.tracker import kalman_filter
import time

def merge_matches(m1, m2, shape):
Expand Down Expand Up @@ -58,13 +58,13 @@ def ious(atlbrs, btlbrs):

:rtype ious np.ndarray
"""
ious = np.zeros((len(atlbrs), len(btlbrs)), dtype=np.float)
ious = np.zeros((len(atlbrs), len(btlbrs)), dtype=float)
if ious.size == 0:
return ious

ious = bbox_ious(
np.ascontiguousarray(atlbrs, dtype=np.float),
np.ascontiguousarray(btlbrs, dtype=np.float)
np.ascontiguousarray(atlbrs, dtype=float),
np.ascontiguousarray(btlbrs, dtype=float)
)

return ious
Expand Down Expand Up @@ -118,13 +118,13 @@ def embedding_distance(tracks, detections, metric='cosine'):
:return: cost_matrix np.ndarray
"""

cost_matrix = np.zeros((len(tracks), len(detections)), dtype=np.float)
cost_matrix = np.zeros((len(tracks), len(detections)), dtype=float)
if cost_matrix.size == 0:
return cost_matrix
det_features = np.asarray([track.curr_feat for track in detections], dtype=np.float)
det_features = np.asarray([track.curr_feat for track in detections], dtype=float)
#for i, track in enumerate(tracks):
#cost_matrix[i, :] = np.maximum(0.0, cdist(track.smooth_feat.reshape(1,-1), det_features, metric))
track_features = np.asarray([track.smooth_feat for track in tracks], dtype=np.float)
track_features = np.asarray([track.smooth_feat for track in tracks], dtype=float)
cost_matrix = np.maximum(0.0, cdist(track_features, det_features, metric)) # Nomalized features
return cost_matrix

Expand Down Expand Up @@ -178,4 +178,4 @@ def fuse_score(cost_matrix, detections):
det_scores = np.expand_dims(det_scores, axis=0).repeat(cost_matrix.shape[0], axis=0)
fuse_sim = iou_sim * det_scores
fuse_cost = 1 - fuse_sim
return fuse_cost
return fuse_cost