|
| 1 | +# ARGOS Dataset — Data Dictionary |
| 2 | + |
| 3 | +This data dictionary describes the fields contained in the released CSV files. |
| 4 | + |
| 5 | +--- |
| 6 | + |
| 7 | +## 1. `synthetic_long_horizon.csv` |
| 8 | + |
| 9 | +| Column | Type | Range / Units | Description | |
| 10 | +|-------------|---------|------------------------|--------------------------------------------------------------| |
| 11 | +| `day` | int | 0–364 (index) | Simulation day index from the start of the horizon. | |
| 12 | +| `occupancy` | float | 0.0–1.0 (fraction) | Normalized occupancy rate (1.0 = fully occupied). | |
| 13 | +| `fatigue` | float | 0.0–1.0 (index) | Staff fatigue index; higher values indicate more fatigue. | |
| 14 | +| `staff_level` | float | 0.0–1.0 (fraction) | Normalized staffing adequacy (1.0 = fully staffed). | |
| 15 | +| `revpar` | float | currency units/room | Revenue per available room (RevPAR), in arbitrary units. | |
| 16 | + |
| 17 | +--- |
| 18 | + |
| 19 | +## 2. `scenario_high_volatility.csv` |
| 20 | + |
| 21 | +| Column | Type | Range / Units | Description | |
| 22 | +|-------------|---------|------------------------|--------------------------------------------------------------| |
| 23 | +| `day` | int | 0–179 (index) | Simulation day index. | |
| 24 | +| `occupancy` | float | 0.0–1.0 (fraction) | Normalized occupancy with elevated variance. | |
| 25 | +| `fatigue` | float | 0.0–1.0 (index) | Staff fatigue index with elevated variance. | |
| 26 | +| `revpar` | float | currency units/room | Highly variable RevPAR under volatile market conditions. | |
| 27 | + |
| 28 | +--- |
| 29 | + |
| 30 | +## 3. `scenario_staff_shortage.csv` |
| 31 | + |
| 32 | +| Column | Type | Range / Units | Description | |
| 33 | +|-------------|---------|------------------------|--------------------------------------------------------------| |
| 34 | +| `day` | int | 0–179 (index) | Simulation day index. | |
| 35 | +| `occupancy` | float | 0.0–1.0 | Normalized occupancy rate. | |
| 36 | +| `fatigue` | float | 0.0–1.0 | Staff fatigue index (typically higher on average). | |
| 37 | +| `staff_level` | float | 0.0–1.0 | Normalized staffing level (typically lower on average). | |
| 38 | +| `revpar` | float | currency units/room | RevPAR under staff-shortage stress conditions. | |
| 39 | + |
| 40 | +--- |
| 41 | + |
| 42 | +## 4. `hyperparam_sweep_results.csv` |
| 43 | + |
| 44 | +| Column | Type | Range / Units | Description | |
| 45 | +|------------------|--------|--------------------------|--------------------------------------------------------------| |
| 46 | +| `alpha` | float | > 0 (e.g., 0.01–0.1) | Step size used in the ARGOS optimizer. | |
| 47 | +| `cag_weight` | float | 0.0–1.0 | Weighting factor for the CAG contour-based direction. | |
| 48 | +| `avg_revpar` | float | currency units/room | Average RevPAR across the experiment horizon. | |
| 49 | +| `violations_tier1` | int | ≥ 0 | Count of Tier-1 feasibility violations (e.g., overbooking). | |
| 50 | +| `fatigue_mean` | float | 0.0–1.0 | Mean staff fatigue index across the horizon. | |
| 51 | + |
| 52 | +--- |
| 53 | + |
| 54 | +## 5. `qubo_example_matrix.csv` |
| 55 | + |
| 56 | +Each row corresponds to one dimension of an 8×8 QUBO matrix. |
| 57 | + |
| 58 | +| Column | Type | Range / Units | Description | |
| 59 | +|-------------|--------|--------------------------|--------------------------------------------------------------| |
| 60 | +| `col_0`–`col_7` | int | typically -5 to +5 | QUBO coefficients \( Q_{ij} \) for binary decision vector. | |
| 61 | + |
| 62 | +(Actual column names may be generic numeric indices depending on CSV export; they represent the columns of the QUBO matrix.) |
| 63 | + |
| 64 | +--- |
| 65 | + |
| 66 | +## 6. `multiunit_traffic_sim.csv` |
| 67 | + |
| 68 | +| Column | Type | Range / Units | Description | |
| 69 | +|-------------------|------|------------------------|--------------------------------------------------------------| |
| 70 | +| `day` | int | 0–99 (index) | Simulation day index. | |
| 71 | +| `hotel_0_traffic` | int | ≥ 0 (counts) | Approximate booking/traffic measure for hotel 0. | |
| 72 | +| `hotel_1_traffic` | int | ≥ 0 | Same for hotel 1. | |
| 73 | +| `hotel_2_traffic` | int | ≥ 0 | Same for hotel 2. | |
| 74 | +| `hotel_3_traffic` | int | ≥ 0 | Same for hotel 3. | |
| 75 | +| `hotel_4_traffic` | int | ≥ 0 | Same for hotel 4. | |
| 76 | + |
| 77 | +Traffic values represent relative load and are not tied to any real booking system. |
| 78 | + |
| 79 | +--- |
| 80 | + |
| 81 | +All fields are generated synthetically; no direct mapping to any operational KPI, property, or organization exists. This makes the dataset suitable for open distribution and methodological benchmarking. |
0 commit comments