A Static and Dynamic Tiered Optimization Framework with Colab Procedures
This repository contains the reference implementation and reproducible
simulation workflow for Lexicographic Constraint Optimization (LCO)
applied to hotel management.
The codebase supports:
-
Static 2-tier LCO:
- Tier
$\mathcal{L}_2$ : revenue maximization - Tier
$\mathcal{L}_3$ : expected overbooking slack minimization
- Tier
- A lexicographic floor mechanism enforcing strict precedence between tiers
- A complete Google Colab procedure documented in a standalone TeX paper
- A code structure that is compatible with future CMDP / RL extensions
The mathematical core matches the model in:
Valamontes, A. (2025).
Lexicographic Constraint Optimization in Hotel Management: Dynamic Online Control, RL Adaptation, and Multi-Property Integration.
Kapodistrian Academy of Science.
lexicographic-hotel-lco/
├── README.md # This file
├── LICENSE # MIT license
├── requirements.txt # Dependencies for local runs
├── pyproject.toml # Optional packaging metadata
├── .gitignore
│
├── src/
│ └── lco_hotel/
│ ├── __init__.py
│ ├── static_lco_model.py # Pyomo-based static 2-tier model
│ └── dynamic_lco_model.py # (optional) CMDP / RL extensions
├── papers/
│ ├── Lexicographic_Constraint_Optimization_in_Hotel_Management_v1_6.pdf
│ ├── LCO_Colab_Procedures.pdf # Standalone "how to run in Colab" paper
│ └── Static_LCO_Correctness_Certification.pdf
│
├── notebooks/
│ ├── LCO_Colab_Procedures.ipynb # Full step-by-step Colab workflow
│ └── LCO_Static_2Tier_Demo.ipynb # Minimal 10×5 synthetic instance
│
└── data/
├── synthetic_booking_scenarios_50csv # Optional synthetic datasets
├── multi_hotel_chain_bookings.csv #
└── synthetic_booking_scenarios_500.csv #