Skip to content

Commit 44bb82c

Browse files
committed
Use pytest.mark.parametrize
1 parent e75e894 commit 44bb82c

File tree

1 file changed

+94
-129
lines changed

1 file changed

+94
-129
lines changed

pygmt/tests/test_clib_to_ndarray.py

Lines changed: 94 additions & 129 deletions
Original file line numberDiff line numberDiff line change
@@ -7,6 +7,7 @@
77
import pandas as pd
88
import pytest
99
from pygmt.clib.conversion import _to_ndarray
10+
from pygmt.helpers.testing import skip_if_no
1011

1112
try:
1213
import pyarrow as pa
@@ -15,99 +16,25 @@
1516
except ImportError:
1617
_HAS_PYARROW = False
1718

18-
19-
@pytest.fixture(scope="module", name="dtypes_numpy_numeric")
20-
def fixture_dtypes_numpy_numeric():
21-
"""
22-
List of NumPy numeric dtypes.
23-
24-
Reference: https://numpy.org/doc/stable/reference/arrays.scalars.html
25-
"""
26-
return [
27-
np.int8,
28-
np.int16,
29-
np.int32,
30-
np.int64,
31-
np.longlong,
32-
np.uint8,
33-
np.uint16,
34-
np.uint32,
35-
np.uint64,
36-
np.ulonglong,
37-
np.float16,
38-
np.float32,
39-
np.float64,
40-
np.longdouble,
41-
np.complex64,
42-
np.complex128,
43-
np.clongdouble,
44-
]
45-
46-
47-
@pytest.fixture(scope="module", name="dtypes_pandas_numeric")
48-
def fixture_dtypes_pandas_numeric():
49-
"""
50-
List of pandas numeric dtypes.
51-
52-
Reference: https://pandas.pydata.org/docs/reference/arrays.html
53-
"""
54-
return [
55-
pd.Int8Dtype(),
56-
pd.Int16Dtype(),
57-
pd.Int32Dtype(),
58-
pd.Int64Dtype(),
59-
pd.UInt8Dtype(),
60-
pd.UInt16Dtype(),
61-
pd.UInt32Dtype(),
62-
pd.UInt64Dtype(),
63-
pd.Float32Dtype(),
64-
pd.Float64Dtype(),
65-
]
66-
67-
68-
@pytest.fixture(scope="module", name="dtypes_pandas_numeric_pyarrow_backend")
69-
def fixture_dtypes_pandas_numeric_pyarrow_backend():
70-
"""
71-
List of pandas dtypes that use pyarrow as the backend.
72-
73-
Reference: https://pandas.pydata.org/docs/user_guide/pyarrow.html
74-
"""
75-
return [
76-
"int8[pyarrow]",
77-
"int16[pyarrow]",
78-
"int32[pyarrow]",
79-
"int64[pyarrow]",
80-
"uint8[pyarrow]",
81-
"uint16[pyarrow]",
82-
"uint32[pyarrow]",
83-
"uint64[pyarrow]",
84-
"float32[pyarrow]",
85-
"float64[pyarrow]",
86-
]
87-
88-
89-
@pytest.fixture(scope="module", name="dtypes_pyarrow_numeric")
90-
def fixture_dtypes_pyarrow_numeric():
91-
"""
92-
List of pyarrow numeric dtypes.
93-
94-
Reference: https://arrow.apache.org/docs/python/api/datatypes.html
95-
"""
96-
if not _HAS_PYARROW:
97-
return []
98-
return [
99-
pa.int8(),
100-
pa.int16(),
101-
pa.int32(),
102-
pa.int64(),
103-
pa.uint8(),
104-
pa.uint16(),
105-
pa.uint32(),
106-
pa.uint64(),
107-
# pa.float16(), # Need special handling.
108-
pa.float32(),
109-
pa.float64(),
110-
]
19+
dtypes_numpy = [
20+
np.int8,
21+
np.int16,
22+
np.int32,
23+
np.int64,
24+
np.longlong,
25+
np.uint8,
26+
np.uint16,
27+
np.uint32,
28+
np.uint64,
29+
np.ulonglong,
30+
np.float16,
31+
np.float32,
32+
np.float64,
33+
np.longdouble,
34+
np.complex64,
35+
np.complex128,
36+
np.clongdouble,
37+
]
11138

11239

11340
def _check_result(result):
@@ -125,60 +52,98 @@ def _check_result(result):
12552
assert result.dtype != np.object_
12653

12754

128-
def test_to_ndarray_numpy_ndarray_numpy_numeric(dtypes_numpy_numeric):
55+
@pytest.mark.parametrize("dtype", dtypes_numpy)
56+
def test_to_ndarray_numpy_ndarray_numpy_numeric(dtype):
12957
"""
13058
Test the _to_ndarray function with 1-D NumPy arrays.
13159
"""
13260
# 1-D array
133-
for dtype in dtypes_numpy_numeric:
134-
array = np.array([1, 2, 3], dtype=dtype)
135-
assert array.dtype == dtype
136-
result = _to_ndarray(array)
137-
_check_result(result)
138-
npt.assert_array_equal(result, array)
61+
array = np.array([1, 2, 3], dtype=dtype)
62+
assert array.dtype == dtype
63+
result = _to_ndarray(array)
64+
_check_result(result)
65+
npt.assert_array_equal(result, array)
13966

14067
# 2-D array
141-
for dtype in dtypes_numpy_numeric:
142-
array = np.array([[1, 2, 3], [4, 5, 6]], dtype=dtype)
143-
assert array.dtype == dtype
144-
result = _to_ndarray(array)
145-
_check_result(result)
146-
npt.assert_array_equal(result, array)
68+
array = np.array([[1, 2, 3], [4, 5, 6]], dtype=dtype)
69+
assert array.dtype == dtype
70+
result = _to_ndarray(array)
71+
_check_result(result)
72+
npt.assert_array_equal(result, array)
14773

14874

149-
def test_to_ndarray_pandas_series_numeric(
150-
dtypes_numpy_numeric, dtypes_pandas_numeric, dtypes_pandas_numeric_pyarrow_backend
151-
):
75+
@pytest.mark.parametrize(
76+
"dtype",
77+
[
78+
*dtypes_numpy,
79+
pytest.param(pd.Int8Dtype(), id="Int8"),
80+
pytest.param(pd.Int16Dtype(), id="Int16"),
81+
pytest.param(pd.Int32Dtype(), id="Int32"),
82+
pytest.param(pd.Int64Dtype(), id="Int64"),
83+
pytest.param(pd.UInt8Dtype(), id="UInt8"),
84+
pytest.param(pd.UInt16Dtype(), id="UInt16"),
85+
pytest.param(pd.UInt32Dtype(), id="UInt32"),
86+
pytest.param(pd.UInt64Dtype(), id="UInt64"),
87+
pytest.param(pd.Float32Dtype(), id="Float32"),
88+
pytest.param(pd.Float64Dtype(), id="Float64"),
89+
pytest.param("int8[pyarrow]", marks=skip_if_no(package="pyarrow")),
90+
pytest.param("int16[pyarrow]", marks=skip_if_no(package="pyarrow")),
91+
pytest.param("int32[pyarrow]", marks=skip_if_no(package="pyarrow")),
92+
pytest.param("int64[pyarrow]", marks=skip_if_no(package="pyarrow")),
93+
pytest.param("uint8[pyarrow]", marks=skip_if_no(package="pyarrow")),
94+
pytest.param("uint16[pyarrow]", marks=skip_if_no(package="pyarrow")),
95+
pytest.param("uint32[pyarrow]", marks=skip_if_no(package="pyarrow")),
96+
pytest.param("uint64[pyarrow]", marks=skip_if_no(package="pyarrow")),
97+
pytest.param("float32[pyarrow]", marks=skip_if_no(package="pyarrow")),
98+
pytest.param("float64[pyarrow]", marks=skip_if_no(package="pyarrow")),
99+
],
100+
)
101+
def test_to_ndarray_pandas_series_numeric(dtype):
152102
"""
153103
Test the _to_ndarray function with pandas Series with NumPy dtypes, pandas dtypes,
154104
and pandas dtypes with pyarrow backend.
155105
"""
156-
for dtype in (
157-
dtypes_numpy_numeric
158-
+ dtypes_pandas_numeric
159-
+ dtypes_pandas_numeric_pyarrow_backend
160-
):
161-
series = pd.Series([1, 2, 3], dtype=dtype)
162-
assert series.dtype == dtype
163-
result = _to_ndarray(series)
164-
_check_result(result)
165-
npt.assert_array_equal(result, series)
106+
series = pd.Series([1, 2, 3], dtype=dtype)
107+
assert series.dtype == dtype
108+
result = _to_ndarray(series)
109+
_check_result(result)
110+
npt.assert_array_equal(result, series)
166111

167112

168113
@pytest.mark.skipif(not _HAS_PYARROW, reason="pyarrow is not installed")
169-
def test_to_ndarray_pandas_series_pyarrow_dtype(dtypes_pyarrow_numeric):
114+
@pytest.mark.parametrize(
115+
"dtype",
116+
[
117+
"int8",
118+
"int16",
119+
"int32",
120+
"int64",
121+
"uint8",
122+
"uint16",
123+
"uint32",
124+
"uint64",
125+
"float32",
126+
"float64",
127+
],
128+
)
129+
def test_to_ndarray_pyarrow_array(dtype):
170130
"""
171131
Test the _to_ndarray function with pandas Series with pyarrow dtypes.
172132
"""
173-
for dtype in dtypes_pyarrow_numeric:
174-
array = pa.array([1, 2, 3], type=dtype)
175-
assert array.type == dtype
176-
result = _to_ndarray(array)
177-
_check_result(result)
178-
npt.assert_array_equal(result, array)
179-
180-
# Special handling for float16.
181-
# Example from https://arrow.apache.org/docs/python/generated/pyarrow.float16.html
133+
array = pa.array([1, 2, 3], type=dtype)
134+
assert array.type == dtype
135+
result = _to_ndarray(array)
136+
_check_result(result)
137+
npt.assert_array_equal(result, array)
138+
139+
140+
@pytest.mark.skipif(not _HAS_PYARROW, reason="pyarrow is not installed")
141+
def test_to_ndarray_pyarrow_array_float16():
142+
"""
143+
Test the _to_ndarray function with pyarrow float16 array.
144+
145+
Example from https://arrow.apache.org/docs/python/generated/pyarrow.float16.html
146+
"""
182147
array = pa.array(np.array([1.5, 2.5, 3.5], dtype=np.float16), type=pa.float16())
183148
result = _to_ndarray(array)
184149
_check_result(result)

0 commit comments

Comments
 (0)