Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
68 changes: 47 additions & 21 deletions pygmt/clib/conversion.py
Original file line number Diff line number Diff line change
Expand Up @@ -132,6 +132,52 @@ def dataarray_to_matrix(
return matrix, region, inc


def _to_numpy(data: Any) -> np.ndarray:
"""
Convert an array-like object to a C contiguous NumPy array.

The function aims to convert any array-like objects (e.g., Python lists or tuples,
NumPy arrays with various dtypes, pandas.Series with NumPy/pandas/PyArrow dtypes,
PyArrow arrays with various dtypes) to a NumPy array.

The function is internally used in the ``vectors_to_arrays`` function, which is
responsible for converting a sequence of vectors to a list of C contiguous NumPy
arrays. Thus, the function uses the :numpy:func:`numpy.ascontiguousarray` function
rather than the :numpy:func:`numpy.asarray`/:numpy::func:`numpy.asanyarray`
functions, to ensure the returned NumPy array is C contiguous.

Parameters
----------
data
The array-like object to convert.

Returns
-------
array
The C contiguous NumPy array.
"""
# Mapping of unsupported dtypes to the expected NumPy dtype.
dtypes: dict[str, type] = {
"date32[day][pyarrow]": np.datetime64,
"date64[ms][pyarrow]": np.datetime64,
}

if (
hasattr(data, "isna")
and data.isna().any()
and Version(pd.__version__) < Version("2.2")
):
# Workaround for dealing with pd.NA with pandas < 2.2.
# Bug report at: https://github.com/GenericMappingTools/pygmt/issues/2844
# Following SPEC0, pandas 2.1 will be dropped in 2025 Q3, so it's likely
# we can remove the workaround in PyGMT v0.17.0.
array = np.ascontiguousarray(data.astype(float))
else:
vec_dtype = str(getattr(data, "dtype", ""))
array = np.ascontiguousarray(data, dtype=dtypes.get(vec_dtype))
return array


def vectors_to_arrays(vectors: Sequence[Any]) -> list[np.ndarray]:
"""
Convert 1-D vectors (scalars, lists, or array-like) to C contiguous 1-D arrays.
Expand Down Expand Up @@ -171,27 +217,7 @@ def vectors_to_arrays(vectors: Sequence[Any]) -> list[np.ndarray]:
>>> all(i.ndim == 1 for i in arrays)
True
"""
dtypes = {
"date32[day][pyarrow]": np.datetime64,
"date64[ms][pyarrow]": np.datetime64,
}
arrays = []
for vector in vectors:
if (
hasattr(vector, "isna")
and vector.isna().any()
and Version(pd.__version__) < Version("2.2")
):
# Workaround for dealing with pd.NA with pandas < 2.2.
# Bug report at: https://github.com/GenericMappingTools/pygmt/issues/2844
# Following SPEC0, pandas 2.1 will be dropped in 2025 Q3, so it's likely
# we can remove the workaround in PyGMT v0.17.0.
array = np.ascontiguousarray(vector.astype(float))
else:
vec_dtype = str(getattr(vector, "dtype", ""))
array = np.ascontiguousarray(vector, dtype=dtypes.get(vec_dtype))
arrays.append(array)
return arrays
return [_to_numpy(vector) for vector in vectors]


def sequence_to_ctypes_array(
Expand Down
Loading