This repo is a Tensorflow course starting from scratch. The inspiration coming from awesome guys to whom I say thanks a lot.
Python environment is required and correctly configured in order o use these exercises.
Please check:
- Git Tensorflow
- Tensorflow Yolo v3
- 01-helloworld.py: It is a simple check to evaluate if Tensorflow is correctly installed.
- 02-helloworld-gpu.py: Same as the item above but checking the GPU support (Nvidia Cuda GPU is required).
- 03-constants.py: Basic example about Tensorflow tensors. Simple Linear Algebra ops are executed as well.
- 04-linear-model.py: The basic linear model.
- 05-tensorboard.py: How write trace to Tensorboard.
- 06-load-traininset.py: Load the trainingset data from csv file.
- 07-save-weights.py: How to save the training weights and load it when available.
- 08-use-model-class.py: Complete example to training, save the weights and load it if present.
- 09-mnist-dataset.py: The helloworld MINIST dataset.
- 10-cifar-dataset.py: The CIFAR-10 dataset.
- 11-images-dataset.py: Run CNN on images classified by folder name.
- 12-images-dataset-cache.py: Same as the above test!!!
- 13-images-dataset-local.py: Same as the above but from local folder
- 14-convert-to-tensorflow-lite.py: Convert the model to tensorflow lite model available to be used on mobile device
Nvidia GPU support CUDA Toolkit 11.6 Update 1 Downloads cuda_11.6.0_511.23_windows Download cuDNN v8.3.2 (January 26th, 2021), for CUDA 11.0,11.1 and 11.2 cudnn-windows-x86_64-8.3.2.44_cuda11.5-archive
python-3.9.7.exe (DO not use python-3.8.5.exe)
- Check Nvidia cuda version
nvcc --versionChecked version: nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2021 NVIDIA Corporation Built on Fri_Dec_17_18:28:54_Pacific_Standard_Time_2021 Cuda compilation tools, release 11.6, V11.6.55 Build cuda_11.6.r11.6/compiler.30794723_0
python --version
conda --version
pip3 --version
# Checked version:
Python 3.9 (3.9.7)
conda 4.10.3
pip 22.0.3-
Create a log folder like c:\log
-
Create the conda environment
conda create --name tensorflow python=3.9
conda activate tensorflow
conda install git
python -m pip install --upgrade pip
pip install -r requirements.txt- Run tensorboard
(tensorflow) tensorboard --logdir=c:\log --port 6006Open a web browser http://localhost:6006
Run following commands before run jupyter at https://github.com/tensorflow/models
conda install git
pip3 install "git+https://github.com/philferriere/cocoapi.git#egg=pycocotools&subdirectory=PythonAPI"Connect to AWS Select the environment Update the system and clone the repo
sudo apt-get update
git clone https://github.com/AntonMu/TrainYourOwnYOLO.git