Skip to content

HJReachability/hj_reachability_torch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Pytorch-based HJ Reachability Computation Toolbox.

Source code of "Data-Driven Hamiltonian for Direct Construction of Safe Set from Trajectory Data", IEEE CDC 2025.

Installation

Python version: 3.12

pip install -r requirements.txt
pip install -e .

Quick navigation

  • dynamics.py: Dynamics & Optimal Control
  • solver.py: Functions for various reachability problems and HJ-PDE numerical solution.
  • grid.py: Grid class in Numpy and Torch.
  • vis.py: Helper functions for visualizations.
  • eval.py: Helper functions for simulation.
  • experiment_design.py: Safe set expansion algorithm.

Examples

Model-based Computation:

  • scripts/random_poly_2d/test_random_poly_2d_main.py
  • scripts/xv15_3d/XV15_3d_in_vgamma_reachavoid.py

Data-Driven Hamiltonian:

  • scripts/random_poly_2d/test_random_poly_2d_datadriven.py
  • scripts/xv15_3d/XV15_3d_in_vgamma_expdesign_datareduction.py

Citation

@InProceedings{choi2025,
author={Choi, Jason J and Strong, Christopher A and Sreenath, Koushil and Cho, Namhoon and Tomlin, Claire J},
booktitle    = {IEEE Conference on Decision and Control (CDC)},
title        = {Data-Driven Hamiltonian for Direct Construction of Safe Set from Trajectory Data},
year         = {2025}
}

About

Pytorch-based hj_reachability computation toolbox

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages