New GSoC project proposal: Highly Granular Quantization for CICADA #1668
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
The CICADA (Calorimeter Image Convolutional Anomaly Detection Algorithm) project aims to provide an unbiased detection of new physics signatures in proton-proton collisions at the Large Hadron Collider's Compact Muon Solenoid experiment (CMS). It detects anomalies in low-level trigger calorimeter information with a convolutional autoencoder, whose behaviour is transferred to a smaller model through knowledge distillation. Careful quantization of the deployed model allows it to meet the requirement of sub-500ns inference times on FPGAs. While CICADA currently employs Quantization Aware Training with different quantization schemes for each layer of the distilled model, a new gradient-based quantization optimization approach published in 2024 offers the possibility of optimizing quantization at the individual weight level. This project would explore implementing this highly granular quantization method to CICADA's distilled model and evaluating its effects on both model performance and resource consumption on FPGAs. The work would involve implementing the new quantization approach, comparing it with the current implementation, and investigating the impact on both detection performance and hardware resource utilization while maintaining the strict timing requirements.