Skip to content

HangOn6/CreditRiskModel_CRA_using_XGBoost_Neural_Network_Random_Forest_Regression_Sourav_Basu

Repository files navigation

Credit Risk Analytics in Python

This project predicts credit risk using a logistic regression model, developed in Google Colab using Python.

Features

  • Exploratory Data Analysis
  • Data Preprocessing
  • Feature Engineering
  • Model Training (Logistic Regression, Decision Tree)
  • Performance Evaluation (AUC, Confusion Matrix)

Tech Stack

  • Python
  • Pandas, NumPy, Scikit-learn, Matplotlib, Seaborn
  • Google Colab
  • Jupyter Notebook format