Skip to content

๐Ÿง  3D Brain Tumor Segmentation with MONAI | BRATS 2020 Baseline UNet, UNet++, SegResNet ๐Ÿš€

License

Notifications You must be signed in to change notification settings

Hassassin-10/MONAITHON-2K25

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

9 Commits
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

# ๐Ÿง  BRATS 2020 Brain Tumor Segmentation with MONAI

This repository contains a **baseline 3D UNet pipeline** built using [MONAI](https://monai.io/) for the **BRATS 2020 dataset**.  
It demonstrates preprocessing, training, and visualization workflows for multi-class brain tumor segmentation.

kaggle Project link: https://www.kaggle.com/code/hassassinsp/monaithon-2k25-brats

---

## ๐Ÿ“Œ Project Overview

- **Task**: Segment brain tumors from 3D MRI scans.
- **Dataset**: [BRATS 2020](https://www.kaggle.com/datasets/awsaf49/brats20-dataset-training-validation) (369 training cases).
- **Frameworks**: MONAI + PyTorch.
- **Model**: Baseline **3D UNet** with Dice Loss.

---

## โš™๏ธ Pipeline

1. **Preprocessing**

   - Spacing, Orientation, Normalization
   - Random cropping, flips, rotations
   - Custom augmentations: Gaussian noise

2. **Training**

   - 3D UNet (Residual Units)
   - Dice Loss + Adam Optimizer
   - Mini-batches on GPU

3. **Evaluation** (planned)

   - Sliding window inference
   - Post-processing (morphological ops, connected components)
   - Metrics: Dice, Hausdorff95, Sensitivity, Specificity

4. **Deployment** (planned)
   - Streamlit/Gradio interactive app

---

## ๐Ÿš€ Quick Start (Kaggle)

```bash
!pip install --no-deps monai nibabel -q
```
import monai
print("MONAI:", monai.__version__)
  1. Add dataset in Kaggle: awsaf49/brats20-dataset-training-validation
  2. Run notebook cells to train & visualize.

๐Ÿ“Š Results & Visualizations

Training Curve (Loss)

Training Curve

Sample MRI Slice

MRI Slice

Ground Truth Mask

Segmentation Mask

Predicted Overlay

Prediction Overlay

(All images generated from training cases in BRATS 2020)



๐ŸŒ€ 3D Tumor Visualization

We also visualized segmented brain tumors in 3D using 3D Slicer.
This provides an intuitive view of tumor location, size, and spread across the brain volume.

3D Tumor

(Above: Flair MRI with tumor segmentation overlay in 3D space)

๐Ÿ”ฎ Future Enhancements

  • Advanced architectures: UNet++, SegResNet, Swin UNETR.
  • Better augmentations (elastic deformation, histogram matching).
  • Full evaluation with ROC/PR curves.
  • Deploy demo app with Streamlit/Gradio.

๐Ÿ“š References


๐Ÿ‘ฅ Authors

Hackathon Team โ€” Ctrl+Alt+Heal

About

๐Ÿง  3D Brain Tumor Segmentation with MONAI | BRATS 2020 Baseline UNet, UNet++, SegResNet ๐Ÿš€

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published