Skip to content

HawksLab/echoGraph

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

EchoGraph - Social Echo Chamber Analyzer

A comprehensive tool for analyzing social media echo chambers and misinformation pathways using knowledge graphs.

🎯 Project Overview

EchoGraph analyzes social media data (Reddit/Twitter) to:

  • Build knowledge graphs from user interactions
  • Detect echo chambers and filter bubbles
  • Identify misinformation pathways
  • Visualize community structures
  • Provide early warning for coordinated misinformation campaigns

Demo:

https://drive.google.com/file/d/12CCHeLH6UgBxAytda2WyfnTBSl2OUAdK/view?usp=sharing

🏗️ Architecture

echoGraph/
├── src/
│   ├── knowledge_graph/     # Custom KG implementation
│   ├── data_collection/     # Reddit/Twitter scrapers
│   ├── analysis/           # Echo chamber & misinformation detection
│   ├── visualization/      # Graph visualization
│   └── web_interface/      # Flask web app
├── data/                   # Sample datasets
├── models/                 # Trained models
├── tests/                  # Unit tests
└── notebooks/              # Jupyter analysis notebooks

🚀 Features

Core Knowledge Graph

  • Custom graph implementation with nodes and edges
  • Support for user, post, and content entities
  • Relationship modeling (follows, shares, comments)
  • Graph traversal and analysis algorithms

Echo Chamber Detection

  • Community detection using custom algorithms
  • Echo chamber scoring based on content diversity
  • Polarization measurement
  • Filter bubble identification

Misinformation Analysis

  • Content similarity analysis
  • Coordinated behavior detection
  • Information pathway tracing
  • Early warning system

Visualization

  • Interactive network graphs
  • Community highlighting
  • Temporal analysis views
  • Dashboard with metrics

📊 Datasets

The project works with:

  • Reddit post and comment data
  • User interaction networks
  • News article URLs and metadata
  • Optional fact-checking labels

🛠️ Installation

# Clone the repository
git clone <https://github.com/HawksLab/echoGraph>
cd echoGraph

# Create virtual environment
python -m venv .venv
source .venv/bin/activate  # On Windows: .venv\Scripts\activate

# Install dependencies
pip install -r requirements.txt

# Run the application
python src/main.py

🎮 Usage

1. Data Collection

from src.data_collection.reddit_scraper import RedditScraper

scraper = RedditScraper()
data = scraper.collect_subreddit_data(['politics', 'conspiracy'], days=30)

2. Build Knowledge Graph

from src.knowledge_graph.graph import KnowledgeGraph

kg = KnowledgeGraph()
kg.build_from_reddit_data(data)

3. Analyze Echo Chambers

from src.analysis.echo_chamber_detector import EchoChamberDetector

detector = EchoChamberDetector(kg)
chambers = detector.detect_echo_chambers()
scores = detector.calculate_echo_scores()

4. Visualize Results

from src.visualization.graph_visualizer import GraphVisualizer

viz = GraphVisualizer(kg)
viz.create_interactive_plot(chambers)
viz.save_html("echo_chambers.html")

📈 Analysis Methods

Echo Chamber Detection

  • Modularity Analysis: Identifies tightly connected communities
  • Content Diversity Score: Measures information variety within groups
  • Cross-Group Interaction: Analyzes inter-community connections
  • Temporal Dynamics: Tracks chamber formation over time

Misinformation Detection

  • Content Similarity: Identifies repeated/coordinated content
  • Propagation Patterns: Traces information spread pathways
  • User Behavior Analysis: Detects suspicious coordination
  • Network Anomalies: Identifies unusual connection patterns

🧪 Algorithms Implemented

  1. Custom Graph Algorithms

    • Breadth-First Search (BFS)
    • Depth-First Search (DFS)
    • Shortest Path (Dijkstra's)
    • Community Detection (Louvain-inspired)
  2. Echo Chamber Metrics

    • Polarization Index
    • Diversity Score
    • Isolation Coefficient
    • Homophily Measure
  3. Misinformation Detection

    • Content Similarity (TF-IDF + Cosine)
    • Behavioral Anomaly Detection
    • Cascade Analysis
    • Coordination Scoring

📊 Sample Results

The system provides:

  • Interactive network visualizations
  • Echo chamber reports with scores
  • Misinformation pathway maps
  • Temporal analysis charts
  • User and content analytics

🔬 Research Applications

This project can be used for:

  • Academic research on social media dynamics
  • Digital humanities studies
  • Computational social science
  • Media literacy education
  • Platform policy research

About

Social Media Analyzer that can detect Echo Chambers and Misinformations using Knowledge Graph

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published