Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 12 additions & 4 deletions deepcaps.py
Original file line number Diff line number Diff line change
Expand Up @@ -713,17 +713,22 @@ def forward(self, x):
x = x.unsqueeze(2).unsqueeze(dim=4)

u_hat = torch.matmul(self.W, x).squeeze() # u_hat -> [batch_size, 32, 10, 32]
u_hat_detached = u_hat.detach()

# b_ij = torch.zeros((batch_size, self.num_routes, self.num_capsules, 1))
b_ij = x.new(x.shape[0], self.num_routes, self.num_capsules, 1).zero_()

for itr in range(self.routing_iters):
c_ij = func.softmax(b_ij, dim=2)
s_j = (c_ij * u_hat).sum(dim=1, keepdim=True) + self.bias
v_j = squash(s_j, dim=-1)

if itr == self.routing_iters -1 :
s_j = (c_ij * u_hat).sum(dim=1, keepdim=True) + self.bias
v_j = squash(s_j, dim=-1)

if itr < self.routing_iters-1:
a_ij = (u_hat * v_j).sum(dim=-1, keepdim=True)
else:
s_j = (c_ij * u_hat_detached).sum(dim=1, keepdim=True)
v_j = squash(s_j, dim=-1)
a_ij = (u_hat_detached * v_j).sum(dim=-1, keepdim=True)
b_ij = b_ij + a_ij
v_j = v_j.squeeze() #.unsqueeze(-1)

Expand Down Expand Up @@ -965,6 +970,7 @@ def accuracy(indices, labels):
print("def test")

def test(model, test_loader, loss, batch_size, lamda=0.5, m_plus=0.9, m_minus=0.1):
model.eval()
test_loss = 0.0
correct = 0.0
for batch_idx, (data, label) in enumerate(test_loader):
Expand All @@ -989,11 +995,13 @@ def test(model, test_loader, loss, batch_size, lamda=0.5, m_plus=0.9, m_minus=0.


def train(train_loader, model, num_epochs, lr=0.001, batch_size=64, lamda=0.5, m_plus=0.9, m_minus=0.1):

optimizer = torch.optim.Adam(model.parameters(), lr)
lambda1 = lambda epoch: 0.5**(epoch // 10)
lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1)
#lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, 0.96)
for epoch in range(num_epochs):
model.train()
for batch_idx, (data, label_) in enumerate(train_loader):
data, label = data.cuda(), label_.cuda()
labels = one_hot(label)
Expand Down