Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 6 additions & 6 deletions src/models/eidetic_3d_lstm_net.py
Original file line number Diff line number Diff line change
Expand Up @@ -57,15 +57,15 @@ def rnn(images, real_input_flag, num_layers, num_hidden, configs):

memory = zero_state

with tf.variable_scope('generator'):
with tf.compat.v1.variable_scope('generator'):

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

  • Compat flags added
  • Need TF2.2 upgradation

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

cc: @Sgsouham

input_list = []
reuse = False
for time_step in range(window_length - 1):
input_list.append(
tf.zeros([batch_size, ims_width, ims_height, output_channels]))

for time_step in range(total_length - 1):
with tf.variable_scope('e3d-lstm', reuse=reuse):
with tf.compat.v1.variable_scope('e3d-lstm', reuse=reuse):
if time_step < input_length:
input_frm = images[:, time_step]
else:
Expand All @@ -76,7 +76,7 @@ def rnn(images, real_input_flag, num_layers, num_hidden, configs):

if time_step % (window_length - window_stride) == 0:
input_frm = tf.stack(input_list[time_step:])
input_frm = tf.transpose(input_frm, [1, 0, 2, 3, 4])
input_frm = tf.transpose(a=input_frm, perm=[1, 0, 2, 3, 4])

for i in range(num_layers):
if time_step == 0:
Expand All @@ -90,17 +90,17 @@ def rnn(images, real_input_flag, num_layers, num_hidden, configs):
hidden[i], cell[i], memory = lstm_layer[i](
inputs, hidden[i], cell[i], memory, c_history[i])

x_gen = tf.layers.conv3d(hidden[num_layers - 1], output_channels,
x_gen = tf.compat.v1.layers.conv3d(hidden[num_layers - 1], output_channels,
[window_length, 1, 1], [window_length, 1, 1],
'same')
x_gen = tf.squeeze(x_gen)
gen_images.append(x_gen)
reuse = True

gen_images = tf.stack(gen_images)
gen_images = tf.transpose(gen_images, [1, 0, 2, 3, 4])
gen_images = tf.transpose(a=gen_images, perm=[1, 0, 2, 3, 4])
loss = tf.nn.l2_loss(gen_images - images[:, 1:])
loss += tf.reduce_sum(tf.abs(gen_images - images[:, 1:]))
loss += tf.reduce_sum(input_tensor=tf.abs(gen_images - images[:, 1:]))

out_len = total_length - input_length
out_ims = gen_images[:, -out_len:]
Expand Down