A computer vision pipeline for Dobot M1, using YOLO for object detection and coordinate transformation for robotic pick and place tasks.
- Real-time object detection using YOLO
- Coordinate conversion from camera to Dobot M1 robot space
- Socket communication between vision system and Dobot M1 Studio
git clone https://github.com/IhsanRobotik/DobotM1_PickAndPlace.git
cd DobotM1_PickAndPlace
This project was build with python 11, you might be able to use other version but its recomended to use the same version. Also it is recommended to use a Python virtual environment to manage dependencies.
-
Create a virtual environment:
python -m venv venv
-
Activate the virtual environment:
.\venv\Scripts\activate
-
Install the requirements:
pip install -r requirements.txt
-
Download and Install Dobot M1 Studio
- Dobot M1 Studio Download Page
- Follow the official installation instructions for your operating system.
-
Connect Dobot M1 to your PC
- Use USB or network connection as described in the Dobot M1 Studio manual.
Run the main Python script:
python main.py
This will start the vision system and open a socket server to communicate with Dobot M1 Studio.
- Open Dobot M1 Studio.
- Load the
Pick and place.script
file from this repository. - Run the script.
The robot will receive coordinates from the vision system and perform pick and place operations.
- Adjust camera calibration and reference coordinates in
main.py
as needed for your setup. - Make sure the camera stream URL in
main.py
matches your actual camera.
MIT License
Sebuah pipeline computer vision untuk Dobot M1, menggunakan YOLO untuk deteksi objek dan transformasi koordinat untuk tugas pick and place robotik.
- Deteksi objek secara real-time menggunakan YOLO
- Konversi koordinat dari kamera ke ruang robot Dobot M1
- Komunikasi socket antara sistem visi dan Dobot M1 Studio
git clone https://github.com/IhsanRobotik/DobotM1_PickAndPlace.git
cd DobotM1_PickAndPlace
Proyek ini dibuat dengan Python 11, disarankan menggunakan versi yang sama.
Sebaiknya gunakan virtual environment untuk mengelola dependensi.
-
Buat virtual environment:
python -m venv venv
-
Aktifkan virtual environment:
.\venv\Scripts\activate
-
Instalasi requirements:
pip install -r requirements.txt
-
Unduh dan Instal Dobot M1 Studio
- Halaman Unduh Dobot M1 Studio
- Ikuti petunjuk instalasi resmi sesuai sistem operasi Anda.
-
Hubungkan Dobot M1 ke PC
- Gunakan koneksi USB atau jaringan sesuai manual Dobot M1 Studio.
Jalankan skrip utama Python:
python mainWebcam.py
Ini akan memulai sistem visi dan membuka socket server untuk komunikasi dengan Dobot M1 Studio.
- Buka Dobot M1 Studio.
- Muat file
Pick and place.script
dari repository ini. - Jalankan skrip tersebut.
Robot akan menerima koordinat dari sistem visi dan melakukan operasi pick and place.
- Sesuaikan kalibrasi kamera dan referensi koordinat di
main.py
sesuai kebutuhan. - Pastikan URL stream kamera di
main.py
sesuai dengan kamera Anda.
MIT License